K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

vì O là trung điểm của AB nên AO = BO =AB/2

vì tam giác AOC vuông tại A, ta có: AOC + ACO = 90 (tổng các góc của tam giác vuông) (1)

ta có:AOC + COD +BOD = 180

       => AOC + 90 +BOD =180

      => AOC + BOD =90 (2)

từ (1),(2) => ACO = BOD

xét tam giác AOC và tam giác BDO có:

CAO = OBD = 90

ACO = BOD (cmt)

=> tam giác AOC đồng dạng với tam giác BDO (g-g)

=>AO/BD =AC/BO

=> AO * BO =BD * AC

=>AB/2 * AB/2 = BD * AC

=> AB2/4 = BD * AC

=> AB2 = 4 * BD * AC

24 tháng 6 2021

Làm hộ e chắc câu 1 thôi ạ, e lm đc câu 2 r ạ!

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA

1:Gọi giao của DO và CB là H

Xét ΔOAD vuông tại A và ΔOBH vuông tại B có

OA=OB

góc AOD=góc BOH

=>ΔOAD=ΔOBH

=>OD=OH

=>ΔCDH cân tại C

=>ΔAOD đồng dạng với ΔBOH

Xét ΔBOH vuông tại B và ΔOCH vuông tại O có

góc BHO chung

=>ΔBOH đồng dang với ΔOCH

=>ΔAOD đồng dạng với ΔOCH

2: ΔCHD cân tại C

=>góc CDH=góc CHD=góc ADH

=>DH là phân giác của góc ADC

28 tháng 3 2023

Cảm ơn bạn nha 

17 tháng 7 2018

Mình đang cần câu này???

24 tháng 7 2021

Năm sau tui thi THPT quốc gia rồi :v, không biết bạn Hoàng Hà còn cần câu này khum nhỉ?