K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Xét tứ giác MAIC có

\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)

=>MAIC là tứ giác nội tiếp

=>\(\widehat{AMC}+\widehat{AIC}=180^0\left(1\right)\)

Ta có: AM\(\perp\)AB

BN\(\perp\)AB

Do đó: AM//BN

=>\(\widehat{AMN}+\widehat{CNB}=180^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{CIA}=\widehat{CNB}\)

Xét (O) có

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

\(\widehat{CBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BC

Do đó: \(\widehat{CAB}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{CIA}=\widehat{CNB}\)

Do đó: ΔCAI đồng dạng với ΔCBN

b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên ICNB là tứ giác nội tiếp

=>\(\widehat{IBC}=\widehat{INC}\)

=>\(\widehat{CBA}=\widehat{CNI}\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C và ΔCIN vuông tại C có

\(\widehat{CBA}=\widehat{CNI}\)

Do đó: ΔCAB đồng dạng với ΔCIN

c: Ta có: MAIC là tứ giác nội tiếp

=>\(\widehat{MAC}=\widehat{MIC}\)

Ta có: NCIB là tứ gáic nội tiếp

=>\(\widehat{NIC}=\widehat{NBC}\)

Ta có: \(\widehat{MIN}=\widehat{MIC}+\widehat{NIC}\)

\(=\widehat{MAC}+\widehat{NBC}\)

\(=90^0-\widehat{CAB}+90^0-\widehat{CBA}\)

\(=180^0-90^0=90^0\)

14 tháng 12 2018

help meeeeeeeeeeeeeeeeeeeeeeee!!!

bài 1:cho nửa đường tròn (o) đường kính AB và đường thẳng d vuông góc với AB tại H, M là điểm di động trên nửa đường tròn. đường thẳng MA,MB lần lượt tại C và D.a,c/m HA.HB=HC.HDb,gọi B' là điểm đói xứng với B qua h .c/m ACDB nội tiếpc,khi M di đọng trên (o) thì tâm I của đường tròn ngoại tiếp tam giác ABC chạy trên đường nào.Bài 2:cho (o) và C nằm ngoài đường tròn . kẻ các tiếp...
Đọc tiếp

bài 1:cho nửa đường tròn (o) đường kính AB và đường thẳng d vuông góc với AB tại H, M là điểm di động trên nửa đường tròn. đường thẳng MA,MB lần lượt tại C và D.

a,c/m HA.HB=HC.HD

b,gọi B' là điểm đói xứng với B qua h .c/m ACDB nội tiếp

c,khi M di đọng trên (o) thì tâm I của đường tròn ngoại tiếp tam giác ABC chạy trên đường nào.

Bài 2:cho (o) và C nằm ngoài đường tròn . kẻ các tiếp tuyến CE , CF với đường tròn , cát tuyến CMN, đường thẳng CO cắt đường tròn tại 2 điểm A và B,CA nằm giữa C và O . gọi I là giao điểm của ABEF

a,c/m tam giácCME đòng dạng tam giác CEN

b,c/m \(CE^2\)= CI .CD

c,c/m tam giác CMI đồng dạng tam giác CON

d,c/m MION nội tiếp

e,c/m góc AIM =góc BIN

__________________________________CÁC BẠN LÀM NHANH HỘ MÌNH NHA ____________________________________________

0

a, xét từ giác AMNC có 
\(\widehat{CAM}\)=90CAM^=90∘ (Ac là tiếp tuyến của (O) , ˆ

\(\widehat{CNM}\)=90CNM^=90∘ (MN vuông góc với CD) => ˆ\(\widehat{CAM}+\widehat{CNM}\)=180

=> AMNC nội tiếp

Xét tứ giác BMND có ˆ\(\widehat{MNB}\)MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)

=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180

=> Tứ giác BDMN nội tiếp

b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)

=> \(\)\(\widehat{CMN}\)CMN^=1212 cung AN(1)

Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)

\(\widehat{NMD}\)=1212 cung NB(2)

Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^1212 (cung AN + cung NB) 

=> \(\widehat{CMD}\)1212 cung AB = 18021802=90

=> tam giác CMD vuông tại M

Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM) 

Mà \(\widehat{MCD}+\widehat{NBM}\)=90

=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)

Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)

Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)

Xét tam giác ANB và CMD ta cs

\(\widehat{ANB}=\widehat{CMD}\) (=90)

\(\widehat{MCD}=\widehat{NAD}\)

=> 2 tam giác này bằng nhau

2 tháng 12 2015

a)MOC vuông tại M => MOC + MCO = 90

 mà ICO cân tại I => MCO = COI ; mà COI + COA =90

=> MOC = COA => OC là phân giác AOM

CM tương tự  đối với OD ( IOD + DOB =90...)

b) \(\Delta\)AOC =\(\Delta\)MOC (c=g-c)

=> A =90 => CA vuông góc với OA tại A thuộc (O)

=> CA là tiếp tuyến của (O)

- CM tương tự DB là tt

c) theo a 

OC là phân giác AOM ; OD là phân giác MOB

mà AOM;MOB là hai góc kề bù => OC vuông góc OD

=>\(\Delta\)COD vuông tại O

\(\Delta\)AMB vuông tại M ( OM =OA=OB =1/2 AB)

mà có góc D = B  =COM ( tự cm)

=> \(\Delta\)COD đồng dạng \(\Delta\)AMD ( g-g)

d) \(\Delta\)AOC đồng dạng \(\Delta\)BDO

=>OA/BD = AC/BO => AC.BD = OA.OB = AB/2 .AB/2 = AB2/4