Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
Vậy bất kì điểm M nào nằm trên mặt phẳng cũng thỏa mãn:
\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\).
b) Do \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\) nên không tồn tại điểm M thỏa mãn: \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\).
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) nên M là trung điểm của AB.
a,, CÓ \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{BA}\)
Vậy với mọi điểm M thì đều thõa mãn
b, có \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{AB}\) ( không thõa mãn)
vậy không có điểm M nào thõa mãn điều kện trên
c, có \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{O}\) \(\Rightarrow\) M là trung điểm của AB
Có \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{BA}+\overrightarrow{MC}\).
Suy ra: \(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AB}\)
Vậy điểm M được xác định sao cho \(\overrightarrow{MC}=\overrightarrow{AB}\).
A B C M
\(\overrightarrow{MB}=\frac{2}{3}\overrightarrow{MA}\)
Ta có: \(\overrightarrow{IA}=m\overrightarrow{IM}+n\overrightarrow{IB}\)
\(\Leftrightarrow\overrightarrow{IM}+\overrightarrow{MA}=m\overrightarrow{IM}+n\left(\overrightarrow{IM}+\overrightarrow{MB}\right)\)
\(\Leftrightarrow\overrightarrow{IM}+\overrightarrow{MA}=m\overrightarrow{IM}+n\overrightarrow{IM}+\frac{2}{3}n\overrightarrow{MA}\)
\(\Leftrightarrow\left(1-m-n\right)\overrightarrow{IM}=\left(\frac{2}{3}n-1\right)\overrightarrow{MA}\)
Do I bất kì nên \(\overrightarrow{IM}\) và \(\overrightarrow{MA}\) chưa chắc cùng phương, vậy đẳng thức luôn đúng khi và chỉ khi:
\(\left\{{}\begin{matrix}1-m-n=0\\\frac{2}{3}n-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{3}{2}\\m=-\frac{1}{2}\end{matrix}\right.\)
a: vecto MA+2vectoMB=vecto 0
=>vecto MA=-2vecto MB
=>M nằm giữa A và B và MA=2MB
c: vecto MA+vecto MB+vecto MC=vecto 0
nên M là trọng tâm của ΔABC