Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
TL :
Nếu n = 2k ( k thuộc N ) thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 ( k thuộc N ) thì n + 3 = 2k + 1 + 3 = 2k + 4 chia hết cho 2
Vậy ( n + 3 ) . ( n + 6 ) chia hết cho 2
Chúc bn hok tốt ~
1,
a, n+3 chia hết cho 13
=> n+3 thuộc B(13)
=> n+3=13k (k thuộc N)
=> n=13k-3
Vậy n có dạng 13k-3
b, n-3 chia hết cho n+3
=> n+3-6 chia hết cho n+3
=>6 chia hết cho n+3
=>n+3 thuộc Ư(6) = {1;2;3;6}
=>n thuộc {-2;-1;0;3}
Vì n là stn nên n thuộc {0;3}
c,2n+4+5 chia hết cho n+1
=>2n+2+7 chia hết cho n+1
=>2(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;7}
d, 2n-7 chia hết cho 3-n
Vì 2(3-n) chia hết cho 3-n
=> 2n-7+2(3-n) chia hết cho 3-n
=> 2n-7+6-2n chia hết cho 3-n
=>-1 chia hết cho 3-n
=>3-n thuộc Ư(-1)={1;-1}
=>n thuộc {2;4}
2,
Ta có: (p-1)p(p+1) chia hết cho 3 mà (p,3)=1 nên (p-1)(p+1) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ => p-1 và p+1 là 2 số chẵn liên tiếp, có 1 số là bội 4 nên tích của chúng chia hết cho 8 (2)
Mà (3,8) = 1 (3)
Từ (1),(2),(3) => (p-1)(p+1) chia hết cho 24
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
\(n\in N\) và n ko chia hết cho 3 nên n có dạng n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)
Nếu n = 3k + 1
thì \(n^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\)
Nếu n = 3k + 2
thì \(n^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\)