Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
a, - Tổng số góc không chứ góc bẹt là :
\(\dfrac{6\left(6-1\right)}{2}-3=12\) ( góc )
b, Ta có : \(\dfrac{n\left(n-1\right)}{2}=21\)
\(\Rightarrow n=7\) ( tia )
c, - Gọi số tia lúc ban đầu là n tia .
Theo bài ra ta có phương trình :\(\dfrac{\left(n+1\right)\left(\left(n+1\right)-1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n}{2}\left(\left(n+1\right)-\left(n-1\right)\right)=\dfrac{n}{2}.\left(n+1-n+1\right)=n=9\)
Vậy ...
a) Có n tia chung gốc. \(\rightarrow\)Có: \(\frac{n\left(n+1\right)}{2}\)(góc)
Lại có: \(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=56=7.8\)
\(\Rightarrow n=7\)
Vậy \(n=7\)
b) Gọi số tia chung gốc ban đầu là n tia. \(\rightarrow\)Sau khi vẽ thêm 1 tia, tổng số tia chung gốc là n+1 tia
Ta có: \(\frac{\left(n+1\right)\left(n+2\right)}{2}-\frac{n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2\right)-n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2-n\right)}{2}=9\)
\(\frac{2\left(n+1\right)}{2}=9\)
\(n+1=9\)
\(n=8\)
Vậy \(n=8\)
Mỗi tia ban đầu tạo với tia mới vẽ một góc mới. Số góc mới tăng thêm là 6, vậy ban đầu có 6 tia.
Nếu vẽ thêm 1 tia chung gốc thì tia này ghép với mỗi tia bạn đầu tạo thành 1 góc.
Vì số góc tăng lên là 9 nên số tia ban đầu là 9 tia
Vậy số tia ban đầu là 9 tia
Câu hỏi của Lê Đinh Doanh - Toán lớp 6 - Học toán với OnlineMath
Nếu vẽ thêm 1 tia chung gốc thì tia này ghép với mỗi tia bạn đầu tạo thành 1 góc.
Vì số góc tăng lên là 9 nên số tia ban đầu là 9 tia
Vậy số tia ban đầu là 9 tia
p/s : kham khảo