K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0
10 tháng 5 2016

Ta đặt A = 1 + 2 + 3 + 4 + 5 + ... + 49 + 50.

Dãy số tự nhiên liên tiếp từ 1 đến 50 có 50 số, trong đó số các số lẻ bằng số các số chẵn nên có 50 : 2 = 25 (số lẻ).

Vậy A là một số lẻ.

Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a - b thì A giảm đi :

    (a + b) - (a - b) = 2 x b

Tức là giảm đi một số chẵn. Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ.

Vì vậy không bao giờ nhận được kết quả là 0

10 tháng 5 2016

Ta đặt A = 1 + 2 + 3 + 4 + 5 + ... + 49 + 50.

Dãy số tự nhiên liên tiếp từ 1 đến 50 có 50 số, trong đó số các số lẻ bằng số các số chẵn nên có 50 : 2 = 25 (số lẻ). Vậy A là một số lẻ. Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a - b thì A giảm đi : (a + b) - (a - b) = 2 x b tức là giảm đi một số chẵn. Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ. Vì vậy không bao giờ nhận được kết quả là 0

 
NV
3 tháng 7 2020

\(S=\pi R^2=36\pi\Rightarrow R=6\)

Phương trình đường tròn:

\(\left(x+2\right)^2+\left(y-0\right)^2=36\)

\(\Leftrightarrow x^2+y^2+4x-32=0\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Công thức tính diện tích S của bồn hoa là: \(S = \pi .{R^2} = \pi .0,{8^2}\left( {{m^2}} \right)\)

b) Giá trị \(\left| {S - 1,984} \right|\) biểu diễn độ lệch giữa số “1,984” và S.

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi bán kính bể hình tròn và bể nủa hình tròn tương ứng là x, y (m). Khi đó, tổng chu vi ba bể là 32 m khi và chỉ khi 1,57x + 2,57y-8=0.

Gọi tổng diện tích của ba bể sục là S (\({m^2}\)). Khi đó \({x^2} + {y^2} = \frac{S}{{3,14}}\).

Trong mặt phẳng toạ độ Oxy, xét đường tròn (C): \({x^2} + {y^2} = \frac{S}{{3,14}}\) có tâm O(0, 0), bán kính \(R = \sqrt {\frac{S}{{3,14}}} \) và đường thẳng \(\Delta :1,57x{\rm{ }} + {\rm{ }}2,57y - 8 = 0\).

Ta có S nhỏ nhất khi R nhỏ nhất; \(M\left( {x;y} \right)\) thuộc đường thẳng \(\Delta \), đồng thời M thuộc đường tròn \(\left( C \right)\). Bài toán chuyển thành: Tìm R nhỏ nhất để \(\left( C \right)\) và \(\Delta \) có ít nhất một điểm chung. Điều đó tương đương với \(\Delta \) tiếp xúc với \(\left( C \right)\), đồng thời M trùng với H là hình chiếu vuông góc của O trên \(\Delta \)

Ta có: \(\overrightarrow {{u_{OH}}}  = \left( {1,57;2,57} \right)\) suy ra \(\overrightarrow {{n_{OH}}}  = \left( {2,57; - 1,57} \right)\).

Phương trình OH là \(2,57x - 1,57y = 0\)

Tọa độ điểm H là nghiệm của hệ \(\left\{ \begin{array}{l}1,57x + 2,57y - 8 = 0\\2,57x - 1,57y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \approx 1,38\\y \approx 2,27\end{array} \right.\)

Vậy bán kính của bể tròn và bể nửa hình tròn tương ứng là 1,38m và 2,27m.

12 tháng 4 2016

Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1  => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4  => R = 2