Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
225=152
=> \(2\left[7\left(m+n\right)^2+2mn\right]⋮15^{^2}\)
\(\Leftrightarrow14\left(m+n\right)^2+4mn⋮15^2\)
\(\Leftrightarrow14\left(m+n\right)^2+\left[\left(m+n\right)^2-\left(m-n\right)^2\right]⋮15^2\)
\(\Leftrightarrow15\left(m+n\right)^2-\left(m-n\right)^2⋮15^2\)
Vì \(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\)
mà (3,5)=1 => (m-n)\(⋮\)15
=> (m-n)2\(⋮\)152
Tương tự 15(m+n)2\(⋮\)152
=> mn \(⋮\)225
Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.
\(P=mn\left[\left(mn+1\right)^2-\left(m+n\right)^2\right]\)
\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)
\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)
\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)
Ta có \(\left\{{}\begin{matrix}\left(m-1\right)m\left(m+1\right)\\\left(n-1\right)n\left(n+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên đều chia hết cho 6
\(\Rightarrow P⋮36\)
Ta có nhận xét: Mọi số chính phương khi chia cho 3 chỉ dư 0 hoặc 1. Thực vậy nếu \(A=x^2\) là số chính phương. Nếu x chia hết cho 3 thì A chia hết cho 3. Nếu x=3k+1 thì \(A=\left(3k+1\right)^2=9k^2+6k+1=3k\left(3k+2\right)+1\) chia 3 dư 1.
Nếu x=3k+2 thì \(A=\left(3k+2\right)^2=9k^2+12k+4=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1.
Vậy nhận xét đúng.
Quay lại bài toán, nếu \(m^2+n^2\vdots3\) thì \(m,n\) chia hết cho 3. Thực vậy giả sử \(m\) không chia hết cho 3, suy ra \(n\) cũng không chia hết cho 3. Suy ra \(m^2,n^2\) chia 3 dư 1. Do đó \(m^2+n^2\) chia 3 dư 2, mâu thuẫn.
Suy ra \(m\) chia hết cho 3, do đó \(n\) không chia hết cho 3.
b) Ta có: \(mn\left(m^2-n^2\right)=mn\left(m-n\right)\left(m+n\right)\)(*)
Xét tích (*), ta thấy khi m và n có cùng tinh chẵn lẻ thì m - n và m + n là số chẵn, từ đó (*)\(⋮2\)
Nếu chỉ có một trong hai số m và n là số chẵn, thì hiển nhiên (*) \(⋮2\)
Vậy (*) \(⋮2\)với mọi trường hợp m và n nguyên. (1)
Xét tiếp tích (*), ta thấy khi m và n có cùng số dư (là các cặp 0,0 ; 1,1 ; 2,2) khi chia cho 3 thì \(m-n⋮3\), từ đó (*) \(⋮3\)
Khi một trong hai số m và n chia hết cho 3 (là các cặp 0,1 ; 0,2) thì hiển nhiên (*) \(⋮3\)
Khi hai số m và n có tổng các số dư khi chia cho 3 là 3 (là cặp 1,2) thì \(m+n⋮3\), từ đó (*) \(⋮3\)
Vậy (*) \(⋮3\)với mọi trường hợp m và n nguyên. (2)
Mặt khác \(\left(2,3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow\)(*) \(⋮2.3=6\)với mọi m và n nguyên \(\Rightarrow mn\left(m^2-n^2\right)⋮6\)với mọi m và n nguyên.
c) Đặt \(n\left(n+1\right)\left(2n+1\right)=k\left(k\inℤ\right)\)
Xét số k, ta thấy n và n + 1 không cùng tính chẵn lẻ nên trong hai số n và n + 1 luôn có một số là bội của 2
\(\Rightarrow k⋮2\)với mọi n nguyên (1)
Xét tiếp số k lần nữa, ta lại thấy khi n\(⋮3\)thì hiển nhiên \(k⋮3\)
Khi n chia 3 dư 2 thì \(n+1⋮3\),từ đó \(k⋮3\)
Khi n chia 3 dư 1 thì \(2n+1⋮3\), từ đó \(k⋮3\)
Vậy \(k⋮3\)với mọi n nguyên. (2)
Mà \(\left(2,3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow k⋮2.3=6\)với mọi n nguyên \(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮6\)với mọi n nguyên
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
225=15 mũ 2
=> 2 [ 7 (m+n)2 +2mn] chia hết cho 15 mũ 2
=>14 + mn2 +4mn chia hết cho 15 mũ 2
=>14 (m+n)2 +[(m+n)2 -(m-n)2] chia hết cho 15 mũ 2
=>15(m+n)2 - (M-n)2 chia hết cho 15 mũ 2
vì 15(m+n)2 chia hết cho 15 mũ 2 => 15(m-n)2 chia hết cho 15 mũ 2
=>{m-n)2 chia hết cho 3 <=>{ m - n chia hết cho 3
{(m-n)2 chia hết cho 5 <=> m-n chia hết cho 5
mà 3,5 =1=> m-n chia hết cho 15
=>(m-n)2 chia hết cho 15 mũ 2
tương tự (m+n)2 chia hết cho 15 mũ 2
=> mn chia hết cho 225