K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hunhun fb NGuyễn Tiến Hoàng

14 tháng 8 2019

a) \(P\left(x\right)=7x^2+2x-5\)

+) Với x = -1. Ta có: \(P\left(-1\right)=7.\left(-1\right)^2+2.\left(-1\right)-5=0\)

=> \(P\left(x\right)=7x^2+2x-5\) là mệnh đề đúng với x=-1

+) Với x =1 . Ta có: \(P\left(1\right)=7.1^2+2.1-5=4\ne0\)

=>  \(P\left(x\right)=7x^2+2x-5\) là mệnh đề sai với x=1

b) Làm tương tự chọn ra hai giá trị

11 tháng 10 2023

thanks bro

 

22 tháng 9 2019

Đáp án: D

Các mệnh đề chứa biến là: a, c, d.

AH
Akai Haruma
Giáo viên
3 tháng 12 2021

Bạn thay giá trị $x$ của từng đáp án vô xem $x^2-8$ có lớn hơn $4x$ không thì đáp án đó đúng

Đáp án $x=6$ (C)

3 tháng 12 2021

thank you

14 tháng 9 2023

d) \(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)

\(\Leftrightarrow0< x< 1\)

15 tháng 9 2023

a) \(P\left(x\right):"x^2-5x+4=0"\)

\(x^2-5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng

b) \(P\left(x\right):"x^2-5x+6=0"\)

\(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng

c) \(P\left(x\right):"x^2-3x=0"\)

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng

d) \(P\left(x\right):"\sqrt[]{x}>x"\)

\(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng

e) \(P\left(x\right):"2x+3< 7"\)

\(2x+3< 7\)

\(\Leftrightarrow2x< 4\)

\(\Leftrightarrow x< 2\)

Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng

f) \(P\left(x\right):"x^2+x+1>0"\)

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng

NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

NV
10 tháng 10 2019

Mệnh đề trên là mệnh đề đúng mà, sai đâu mà sai bạn? Chắc giáo viên nhầm đó

Một mệnh đề "tồn tại" muốn đúng thì chỉ cần chỉ ra một trường hợp đúng (nhiều hơn 1 cũng ko vấn đề)

Một mệnh đề "với mọi" thì chỉ cần chỉ ra 1 trường hợp sai, mệnh đề đó sẽ sai (có nghĩa muốn "với mọi" đúng thì phải đúng tất cả trường hợp)