Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-2y| =5 <=> có 2TH x-2y=5 hoặc x-2y = -5 <=> x= 5+2y hoặc x = -5+2y.
TH1: x=5+2y <=> bạn thay giá trị này của x vào pt 2x=3y => y=-10,x= -15. Muốn tìm z thì bạn thay x hoặc y vào pt ở đề bài, x hoặc y thay vào đều được: z= -6
TH2:Tương tự x=-5+2y <=> y=10, x= 15,z= 6
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
Ta có:
\(\left(x+\dfrac{1}{2}\right)^2\)+1\(\ge\)1
mà \(\left(x+\dfrac{1}{2}\right)^2\)\(\ge\)0
Dấu ''='' xảy ra khi:
\(\left(x+\dfrac{1}{2}\right)^2\)=0
=>x+\(\dfrac{1}{2}\)=0
=>x=\(\dfrac{-1}{2}\)
Vậy GTNN của \(\left(x+\dfrac{1}{2}\right)^2\)+1 là 1 khi x=\(\dfrac{-1}{2}\)
\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)
\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)
\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)
\(\Rightarrow2A\ge-18\)
\(\Rightarrow A\ge-9\)
DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
(\(\frac{-2}{3}\)x\(^3\)y\(^2\))(\(\frac{1}{2}\)x\(^2\)y\(^5\))