Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do A thuộc \(\Delta\) nên tọa độ có dạng \(A\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{AM}=\left(2t+5;-2t\right)\)
\(\Rightarrow AM=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{13}\)
\(\Leftrightarrow8t^2+20t+25=13\)
\(\Leftrightarrow8t^2+20t+12=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{3}{2}\end{matrix}\right.\)
Có 2 điểm A thỏa mãn: \(\left[{}\begin{matrix}A\left(0;-1\right)\\A\left(1;-2\right)\end{matrix}\right.\)
b. Do B thuộc \(\Delta\) nên tọa độ có dạng \(B\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{BM}=\left(2t+5;-2t\right)\)
\(MB=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{8t^2+20t+25}=\sqrt{8\left(t+\dfrac{5}{4}\right)^2+\dfrac{25}{2}}\ge\sqrt{\dfrac{25}{2}}\)
Dấu "=" xảy ra khi \(t+\dfrac{5}{4}=0\Leftrightarrow t=-\dfrac{5}{4}\Rightarrow B\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\)
Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán.
Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$
$\overrightarrow{u_{d'}}=(a,b)$
\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)
$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$
PTĐT $d'$ là:
$-x+3y=0$ hoặc $3x+y=0$
Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?
Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và
\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)
Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1
khó vãi