Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath