Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có BI//AC gt / CI//BD BOC=90 độ (tcht) suy ra tứ giác OBIC LÀ hình chữ nhật dkpcm
có OBIC là hình chữ nhật suy ra OI=BC (tchcn) mà BC = AB suy ra OIBAB dkpcm
hình thoi abcd cần có 1 góc vuông hình chữ nhất OIBAB là hình vuông
Đây chỉ là hướng giải, ko phải bài giải nhé ^^!
a) Chứng minh theo dấu hiệu hình hình hành có 1 góc vuông là hcn
b) Cm theo DH Tứ giác có 2 cạnh đối song song và bằng nhau là hình bình hành => AB = OI (2 cạnh đối)
c) Để OBIC là hình vuông thì OB = OC hay BD = AC <=> ABCD là hình vuông
a: Xét tứ giác OBIC có
M là trung điểm của OI
M là trung điểm của BC
Do đó OBIC là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên OBIC là hình chữ nhật
b: ta có: OBIC là hình chữ nhật
nên OI=BC
mà BC=AB
nên OI=AB
Hình bạn tự vẽ nha
a) Chứng minh OBIC là hình chữ nhật
Vì I đối xứng với O qua M nên
MO = MI
Xét tứ giác OBIC có :
MO = MI (cmt)
MB = MC ( Vì M là tđ BC )
mà OI giao BC tại M
=)) OBIC là hình bình hành (1)
Lại có ABCD là hình thoi
mà 2 đường chéo AC và BD giao nhau tại O
=)) góc AOB = góc COB = 90O (2)
Từ (1) và (2) =)) OBIC là hình chữ nhật
b) CM AB = OI
Vì OBIC là hình chữ nhật
=) OC = BI
mà OC = AO ( Vì ABCD là hình thoi )
=) BI = AO (3)
Lại có OBIC là hình chữ nhật
=)) OC // BI
mà O thuộc AC ( do O là tđ của AC )
=)) AC // BI hay AO // BI (4)
Từ (3) và (4) =)) ABIO là hình bình hành
=)) AB = OI
c) SABIO = ??? cm2
Vì ABCD là hình thoi
có 2 đường chéo AC và BD giao nhau tại O
=) O là tđ của AC
O là tđ của BD
mà AC = 6 cm
=) AO = OC = 6 : 2 = 3 ( cm )
Lại có BD = 9 cm
=) BO = OD = 9 : 2 = 4,5 (cm )
Xét tam giác BOC ( góc BOC = 90O ) có :
BC2 = OB2 + OC2 ( Theo định lý Pitago )
=) BC = \(\sqrt{3^2+\left(4,5\right)^2}\)
=) BC \(\approx5,4\left(cm\right)\)
Lại có BM = MC = BC chia 2 =) BM = 2,7 ( cm )
Vì ABCD là hình thoi =) BC = AB = 5,4 cm
Vì OBIC là hình chữ nhật có
2 đường chéo OI và BC giao nhau tại M
=) \(BM\perp OI\)
Vì ABOI là hbh ( cmt câu b )
=) SABOI = AB . BM = 2,7 x 5,4 = 14 , 58 (cm2 )
Vậy ta có ĐPCM
Chúc bạn học tốt =))
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A