Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Leftrightarrow\hept{\begin{cases}3x-y=2m-1\\3x+6y=9m+6\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}-7y=-7m-7\\x+2y=3m+2\end{cases}}\)
\(\left(1\right)\Rightarrow y=\frac{-7\left(m+1\right)}{-7}=m+1\)(3)
Thay (3) vào (2) ta được : \(x+2m+2=3m+2\Leftrightarrow x=m\)(4)
Thay (3) ; (4) vào biểu thức trên ta được
\(x^2+y^2=10\Rightarrow m^2+\left(m+1\right)^2=10\)
\(\Leftrightarrow m^2+m^2+2m+1=10\Leftrightarrow2m^2+2m-9=0\)
\(\Leftrightarrow m=\frac{-1\pm\sqrt{19}}{2}\)
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...
Ta có: \(\hept{\begin{cases}2x+my=1\\mx+2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}4x+2my=2\\m^2x+2my=m\end{cases}}\)
<=> \(4x-m^2x=2-m\)
<=> \(x\left(2-m\right)\left(m+2\right)=2-m\)
Để hpt có nghiệm duy nhất <=> 2 - m \(\ne\)0 <=> m \(\ne\)2
<=> \(x=\frac{2-m}{\left(2-m\right)\left(m+2\right)}=\frac{1}{m+2}\)
=> y = \(\frac{1-mx}{2}=\frac{1-m\cdot\frac{1}{m+2}}{2}=\frac{m+2-m}{2\left(m+2\right)}=\frac{1}{m+2}\)
Theo bài ra, ta có: \(x^2+y^2=\frac{1}{2}\) <=> \(\left(\frac{1}{m+2}\right)^2+\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)
<=> \(2\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)
<=> \(\left(\frac{1}{m+2}\right)^2=\frac{1}{4}\)
<=> \(\orbr{\begin{cases}\frac{1}{m+2}=\frac{1}{2}\\\frac{1}{m+2}=-\frac{1}{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}m+2=2\\m+2=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}m=0\\m=-4\end{cases}}\left(tm\right)\)
Vậy ....
Bài này lần đầu em gặp, có gì sai góp ý cho em nhé, check hộ em \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-mx=1-m\\mx+y=m+1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-m\\m\left(1-m\right)+y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-m\\m-m^2+y=m+1\end{cases}}\)
\(\left(2\right)\Rightarrow-m^2+y=1\Leftrightarrow y=1+m^2\)
mà : \(x+y=4\)hay \(1-m+1+m^2=4\Leftrightarrow m^2-m-2=0\)
Ta có : \(\Delta=1-4\left(-2\right)=9>0\)
\(m_1=\frac{1-3}{2}=-1;m_2=\frac{1+3}{2}=2\)
TH1 : Thay m = -1 vào hệ phương trình trên ta được
\(\hept{\begin{cases}-2x+y=2\\-x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}-x=2\\-x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)
TH2 : Thay m = 2 vào hệ phương trình trên ta được :
\(\hept{\begin{cases}x+y=2\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}-x=-1\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy ...
Ta có
\(\hept{\begin{cases}x+y=3m-2\\x-2y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\3y=3m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\)
Vậy hpt có nghiệm \(\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\) ( 1 )
Thay ( 1 ) vào x2 - 2y + 2 = 0 ta được
\(\left(2m-2\right)^2-2m+2=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-2\right)-\left(2m-2\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-2=0\\2m-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{3}{2}\end{cases}}\)
Vậy ..................................