Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (12x^2-12xy+3y^2)-10x(2x-y)+8=3(2x-y)^2-10x(2x-y)+8=(2x-y)(6x-3y-10x)+8=8-(2x-3y)(4x+3y)
2) áp dụng BĐT cauchy ta có (x+y)(y+z)(z+x)\(\ge\)\(2\sqrt{xy}\).\(2\sqrt{yz}\).\(2\sqrt{xz}\)=8xyz
dấu đẳng thức xảy ra khi x=y=z
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)
=(2x-4+x+1)^2
=(3x-3)^2
Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4
c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)
=x^2-2y^2+10z^2
=6^2-2*5^2+10*4^2
=146
d: x=9 thì x+1=10
\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1
=-1
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
Bạn khá hiểu bài rồi đó. Đúng hết 4 câu đầu luôn.
Bổ sung thêm vào câu 3 một chút (nối tiếp theo sau nhé):
\(\Rightarrow\left(m-n\right)\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)
Bổ xung thêm vào câu 4:
\(\Rightarrow\left(x-y\right)\left(2x-3y\right)\left(2x+3y\right)\)
Sửa lại câu 5:
\(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=-10x^2\left(2b-a\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=\left[-10x^2-\left(x^2+2\right)\right]\left(2b-a\right)^2\)
\(=\left(-10x^2-x^2-2\right)\left(2b-a\right)^2\)
\(=\left(-11x^2-2\right)\left(4b^2-4ab+a^2\right)\)