K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:

a) Ta có:

{MEACABACMEABMEA=900{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900

{MFABABACMFACMFA=900{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900

Tam giác ABCABC vuông tại AA nên EAF=900∠EAF=900

Tứ giác AFMEAFME có 3 góc MEA=MFA=EAF=900∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.

b)

Vì MEAC,MFABME∥AC,MF∥AB nên áp dụng định lý Thales ta có:

MEAC=BMBC;MFAB=CMBCMEAC=BMBC;MFAB=CMBC

Chia hai vế: MEMF.ABAC=BMCM⇒MEMF.ABAC=BMCM

Vì AFMEAFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MFME=MF

MEMF=1ABAC=BMCM⇔MEMF=1⇔ABAC=BMCM

ABAB+AC=BMBM+CM=BMBC⇔ABAB+AC=BMBM+CM=BMBC

Vậy điểm M nằm trên BC sao cho BMBC=ABAB+ACBMBC=ABAB+AC thì AFMEAFME là hình vuông.

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=5(cm)

mà AD=EF(AEDF là hình chữ nhật)

nên EF=5cm

c: Để AEDF là hình vuông thì AD là tia phân giác của góc FAE

=>AD là tia phân giác của góc BAC

Vậy: Khi D là chân đường phân giác kẻ A xuống BC thì AEDF là hình vuông