K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Từ D kẻ đt vuông góc với DM và cắt BC tại F. Cm tam giác DCF=DAM -->DF=DM.Áp dụng ht \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)vào tgDFN là được nhé!!

9 tháng 9 2017

A B C D M N E

tu D kẻ DE vuong góc với AB (E thuộc AB)

áp dụng hệ thức lượng vào tam giác vuông EMD 

\(\frac{1}{AD^2}=\frac{1}{ED^2}+\frac{1}{DM^2}\)(1)

ma tam giac \(\Delta EAD=\Delta NCD\left(cgv-gnk\right)\)

\(\Rightarrow ED=ND\)

thay vào (1) ta có \(\frac{1}{AD^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)

       HAY \(\frac{1}{a^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)

25 tháng 9 2020

1 tháng 10 2016

A B C D M N H

Kẻ DH vuông góc với DN tại D

Xét ΔADM và ΔCDH có:

  ^DAM=^DCH=90(gt)

   AD=DC(gt)

  ^ADM=^CDH (cùng phụ với ^NDC)

=>ΔADM=ΔCDH(g.c.g)

=>DM=DH

Xét ΔDHN vuông tại D(gt).Có:

 \(\frac{1}{DH^2}+\frac{1}{DN^2}=\frac{1}{DC^2}=\frac{1}{a^2}\)

hay \(\frac{1}{DM^2}+\frac{1}{DN^2}=\frac{1}{a^2}\)

 

 

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)