Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M x N y
Giải:
Do AB // CD nên: \(\widehat{AMN}+\widehat{MNC}=180^o\) ( 2 góc trong cùng phía bù nhau )
\(\Rightarrow\widehat{AMx}+\widehat{xMN}+\widehat{MNC}=180^o\)
Do \(\widehat{AMx}=\widehat{CNy}\left(gt\right)\)
\(\Rightarrow\widehat{CNy}+\widehat{xMN}+\widehat{MNC}=180^o\)
\(\Rightarrow\left(\widehat{CNy}+\widehat{MNC}\right)+\widehat{xMN}=180^o\)
\(\Rightarrow\widehat{MNy}+\widehat{xMN}=180^o\)
Mà 2 góc \(\widehat{MNy},\widehat{xMN}\) ở vị trí trong cùng phía
\(\Rightarrow\)Mx // Ny ( đpcm )
Vậy...
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
Suy ra: AC và BD cắt nhau tại trung điểm của mỗi đường
hay MA=MC; MB=MD
+ Ta có góc BEF=30+40=70 độ = góc ABE
Mà hai góc này là hai góc so le trong nên AB//EF
+ Ta có góc ECD+CEF=140+40=180 độ ( bù nhau )
Mà hai góc này là hai góc trong cùng phía nên CD//EF
Từ AB//EF và CD//EF
-> AB//CD ( theo tính chất bắc cầu )
A B C D 1 1 1 1 2 2 2 2
Giải:
Xét \(\Delta ABC,\Delta ADC\) có:
\(\widehat{A_1}=\widehat{C_1}\) ( do đây là 2 góc so le trong và AB // CD )
\(AB=CD\left(gt\right)\)
\(\widehat{A_2}=\widehat{C_2}\) ( do đây là 2 góc so le trong và AB // CD )
\(\Rightarrow\Delta ABC=\Delta ADC\left(g-c-g\right)\)
\(\Rightarrow AD=BC\) ( cạnh tuong ứng )
Mà \(\widehat{A_2}=\widehat{C_2}\) ( do đây là góc so le trong và AB // CD ) và 2 góc này ở vị trí so le trong nên AD // BC
Vậy AD = BC; AD // BC
Chụp hình lên đi bạn