Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^7+x^5+1\)
\(= (x^7 - x ) + (x^5 - x^2 ) + (x^2 + x + 1)\)
\(= x(x^3 - 1)(x^3 + 1) + x^2(x^3 - 1) + (x^2 + x + 1)\)
\(= (x^2 + x + 1)(x - 1)(x^4 + x) + x^2 (x - 1)(x^2 + x + 1) +(x^2 + x +1)\)
\(= (x^2 + x + 1)[(x^5 - x^4 + x^2 - x) + (x^3 - x^2 ) + 1]\)
\(= (x^2 + x + 1)(x^5 - x^4 + x^3 - x + 1)\)
b) tương tự
a).
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^3-x^2\right)\)
b).\(x^8+x^7+1=\left(x^8+x^7+x^6\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
d).
\(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
e).
\(x^8+x^4+1=x^8+2x^4+1-x^4\\ =\left(x^4+1\right)^2-\left(x^2\right)^2\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Người thấy khó thì thấy nhiều
Người thấy dễ thì thấy bình thường hoặc kể cả dễ ẹc
Khổ nổi em chưa học tới thông cảm nha
bài 4
a, x4+4y4
=x4+2.x2.2y2+4y4-2x2.2y2
=(x2+2y2)2-4x2y2
(HĐT số 1)
=(x2+2y2-2xy)(x2+2y2+2xy)
(HĐT số 3)
b, x(x+1)(x+2)(x+3)+1
=(x2+3x)(x2+3x+2)+1 (1)
Đặt x2+3x+1=a
( vì 1 là trung bình cộng của 2 và 0)
(1) = (a-1)(a+1)+1
=a2-1+1 =a2
(HĐT số 3)
=> (1) = (x2+3x+1)2
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
bài 1
đặt a = n5 - n = n (n4 - 1) = n (n - 1) (n + 1) (n2 + 1)
n(n + 1) luôn chia hết cho 2 => a luôn chia hết cho 2
ta cần cm a chia hết cho 5 => có 2 trường hợp
th1: n chia hết cho 5 => a chia hết cho 5
th2: n ko chia hết cho 5 => n = 5k + b (với b = 1 ; 2 ; 3 ; 4)
với b = 1 => n - 1 = 5k
với b = 2 => n2 + 1 = (5k+2)2 + 1 = 25k2 + 20k + 5
=> a chia hết cho 5
với b=3 => n2 + 1 = (5k+3)2 +1 = 25k2 + 30k + 10
=> a chia hết cho 5
với b = 4 => n + 1 = 5k + 5
=> a chia hết cho 5
từ các th trên => a luôn chia hết cho 5
2 và 5 nguyên tố cùng nhau => a chia hết cho 00 => a tận cùng là 0
=> đpcm
a) 3x+2(x-5)=-x+2
<=> 3x+2x+x=2+10
<=>6x=12
<=>x=2
b) 3x2-2x=0
<=>x(3x-2)=0
<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)
<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)
<=> 8x+2x-8=24-6x
<=>8x+2x+6x=24+8
<=>16x=32
<=>x=2
d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)
<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
=> (x-2)2-3(x+2)=2(x-11)
<=> x2-4x+4-3x-6=2x-22
<=> x2-4x-3x-2x=-22-4+6
<=> x-9x+20=0
<=> (x-4)(x-5)=0
<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )
d) (x2+1)(x2-4x+4)=0
=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)
=>(x-2)2 =0
=>x=2
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
mik làm câu 1 nhé
để biểu thức nhận giá trị nguyên thì x2+2x+12 chia hết cho x-5 ( 1)
Mà x-5 chia hết cho x-5 => x(x-5) chia hết cho x-5
hay x2-5x chia hết cho x-5 (2)
lấy (1)trừ (2) ta được
x2+2x+12 -x2+5x chia hết cho x-5
hay 7x+12 chia hết cho x-5
=> 7(x-5)+47 chia hết cho x-5
=>47 chia hết cho x-5
=> x-5 thuộc ước nguyên của 47
đến đây bạn tự làm tiếp nhé !!
Bài 2:
a: \(A=1999\cdot2001\)
\(=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1< 2000^2=B\)
Do đó: B lớn hơn
b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=D\)
Do đó: D lớn hơn
Chọn A