K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

a) \(x^7+x^5+1\)

\(= (x^7 - x ) + (x^5 - x^2 ) + (x^2 + x + 1)\)

\(= x(x^3 - 1)(x^3 + 1) + x^2(x^3 - 1) + (x^2 + x + 1)\)

\(= (x^2 + x + 1)(x - 1)(x^4 + x) + x^2 (x - 1)(x^2 + x + 1) +(x^2 + x +1)\)

\(= (x^2 + x + 1)[(x^5 - x^4 + x^2 - x) + (x^3 - x^2 ) + 1]\)

\(= (x^2 + x + 1)(x^5 - x^4 + x^3 - x + 1)\)

b) tương tự

9 tháng 7 2017

thêm và bớt là sao??? cho đề đầy đủ đi

4 tháng 6 2017

a).

\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^3-x^2\right)\)

b).\(x^8+x^7+1=\left(x^8+x^7+x^6\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

d).

\(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

e).

\(x^8+x^4+1=x^8+2x^4+1-x^4\\ =\left(x^4+1\right)^2-\left(x^2\right)^2\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

4 tháng 6 2017

c).

\(x^5-x^4-1=x^5-x^3-x^2-\left(x^4-x^2-x\right)+x^3-x-1\\ \left(x^3-x-1\right)\left(x^2-x+1\right)\)

Người thấy khó thì thấy nhiềuohokhocroi

Người thấy dễ thì thấy bình thường hoặc kể cả dễ ẹchahaokeoeo

Khổ nổi em chưa học tới thông cảm nhahuhu

23 tháng 10 2017

bài 4

a, x4+4y4

=x4+2.x2.2y2+4y4-2x2.2y2

=(x2+2y2)2-4x2y2

(HĐT số 1)

=(x2+2y2-2xy)(x2+2y2+2xy)

(HĐT số 3)

b, x(x+1)(x+2)(x+3)+1

=(x2+3x)(x2+3x+2)+1 (1)

Đặt x2+3x+1=a

( vì 1 là trung bình cộng của 2 và 0)

(1) = (a-1)(a+1)+1

=a2-1+1 =a2

(HĐT số 3)

=> (1) = (x2+3x+1)2

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

11 tháng 2 2017

bài 1

đặt a = n5 - n = n (n4 - 1) = n (n - 1) (n + 1) (n2 + 1)

n(n + 1) luôn chia hết cho 2 => a luôn chia hết cho 2

ta cần cm a chia hết cho 5 => có 2 trường hợp

th1: n chia hết cho 5 => a chia hết cho 5

th2: n ko chia hết cho 5 => n = 5k + b (với b = 1 ; 2 ; 3 ; 4)

với b = 1 => n - 1 = 5k

với b = 2 => n2 + 1 = (5k+2)2 + 1 = 25k2 + 20k + 5

=> a chia hết cho 5

với b=3 => n2 + 1 = (5k+3)2 +1 = 25k2 + 30k + 10

=> a chia hết cho 5

với b = 4 => n + 1 = 5k + 5

=> a chia hết cho 5

từ các th trên => a luôn chia hết cho 5

2 và 5 nguyên tố cùng nhau => a chia hết cho 00 => a tận cùng là 0

=> đpcm

11 tháng 2 2017

bài 3

A = x4 - 2x3 + 3x2 - 4x + 2015

= (x2)2 - 2x2x + x2 + 2x2 - 4x + 2 + 2013

= (x2 - x)2 + 2(x - 1)2 +2013

có (x2 - x)2 và 2(x - 1)2 luôn lớn hơn hoặc = 0

=> A luôn lớn hơn hoặc = 2013

=> A min = 2013 tại (x2 - x)2 = 2(x - 1)2 = 0 <=> x = 1

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm

19 tháng 11 2017

a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y

=>x2+2y2+ 1 ≥ 1

=>Phân thức trên luôn có nghĩa

19 tháng 11 2017

cảm ơn bạn nhoahaha

5 tháng 3 2017

mik làm câu 1 nhé

để biểu thức nhận giá trị nguyên thì x2+2x+12 chia hết cho x-5 ( 1)

Mà x-5 chia hết cho x-5 => x(x-5) chia hết cho x-5

hay x2-5x chia hết cho x-5 (2)

lấy (1)trừ (2) ta được

x2+2x+12 -x2+5x chia hết cho x-5

hay 7x+12 chia hết cho x-5

=> 7(x-5)+47 chia hết cho x-5

=>47 chia hết cho x-5

=> x-5 thuộc ước nguyên của 47

đến đây bạn tự làm tiếp nhé !!

5 tháng 3 2017

vòng bn vậy bn

Bài 2: 

a: \(A=1999\cdot2001\)

\(=\left(2000-1\right)\left(2000+1\right)\)

\(=2000^2-1< 2000^2=B\)

Do đó: B lớn hơn

b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}=D\)

Do đó: D lớn hơn