K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

HÌNH TỰ VẼ

TA CÓ :A1+B1=AOB

MÀ A1+600 B2=450 

          600+450=1050AOB

VẬY AOB=1050

9 tháng 10 2019

thank

12 tháng 9 2016

Câu 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{3b}{9}=\frac{2c}{8}=\frac{a-3b+2c}{2-9+8}=\frac{30}{1}=30\)

\(\Rightarrow\begin{cases}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{4}=30\end{cases}\)\(\Rightarrow\begin{cases}a=60\\b=90\\c=120\end{cases}\)

 

10 tháng 10 2019

Hình bạn tự vẽ:

Qua \(O\) ta kẻ \(Oa\) sao cho \(Oa\) // \(m.\)

=> \(\widehat{A_1}=\widehat{O_1}\) (vì 2 góc so le trong)

\(\widehat{A_1}=30^0\left(gt\right)\)

=> \(\widehat{O_1}=30^0.\)

\(m\) // \(n\left(gt\right)\)

\(m\) // \(Oa\) (do cách vẽ)

=> \(Oa\) // \(n.\)

=> \(\widehat{O_2}=\widehat{B_1}\) (vì 2 góc so le trong)

\(\widehat{B_1}=40^0\left(gt\right)\)

=> \(\widehat{O_2}=40^0.\)

Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{AOB}\)

=> \(30^0+40^0=\widehat{AOB}\)

=> \(\widehat{AOB}=70^0\)

Vậy \(\widehat{AOB}=70^0.\)

Chúc bạn học tốt!

31 tháng 3 2017

a) Vừa nhìn đề biết ngay sai

Sửa đề:

Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)

Giải:

Ta có:

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\)\(P^2\left(-2\right)\ge0\)

Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)

b) Giải:

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)

31 tháng 3 2017

a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c

P(2) = a.\(2^2\)+b.2+c = 4a+2b+c

=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0

<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)

Nếu P(1) = P(2) => P(1).P(2) = 0

Nếu P(1) = -P(2) => P(1).P(2) < 0

Vậy P(1).P(2)\(\le\)0

b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)

Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

2 tháng 7 2016

O x y A C d2 d1 B 45o

Thế này à?

4 tháng 10 2018

đúng rồi đó bạn :)