Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: c A a ' ^ + a ' A B ^ = 180° (hai góc kề bù)
=> a ' A B ^ = 180 ° − c A a ' ^ = 180 ° − 120 ° = 60 °
=> a ' A B ^ = A B b ^ = 60 ° (hai góc so le trong bằng nhau)
=> aa' // bb'
a) Vì góc tMz và góc NMz kề bù nên:
\(\widehat{tMz}+\widehat{NMz}=180^o\)
\(\Rightarrow30^o+\widehat{NMz}=180^o\)
\(\Rightarrow\widehat{NMz}=180^o-30^o=150^o\)
Ta có: \(\widehat{NMz}=\widehat{MNy}=150^o\)
\(\Rightarrow\) Mz // Ny (vì có cặp góc so le trong bằng nhau)
a) 2 đường thẳng Mz và Ny song song
b) 2 đường thẳng Ny và Ox không song song vì 2 góc so le trong không bằng nhau
a) Trước hết, ta nêu cách vẽ một đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
1.Cách vẽ dùng ê ke và thước kẻ:
+Cho trước đường thẳng p và M ∉ p.
Đặt một lề ê ke trùng với p, dịch chuyển ê ke trên p sao cho lề thứ hai của ê ke sát vào M
+Cho trước đường thẳng p và M∈pM∈p
Đặt một lề ê ke trùng với p và dịch chuyển ê ke trên p sao cho góc ê ke trùng với M.
2.Cách vẽ dùng compa và thước kẻ:
+Cho trước đường thẳng p và M ∉ p.
Vẽ đường thẳng qua M vuông góc với p.
Chọn trên p hai điểm A và B.
Vẽ các đường tròn (A; AM) và (B; BM)
Hai đường tròn này cắt nhau tại M và M’ thì NM’ vuông góc với p
Chú ý: Có thể xem bài tập 51 phần hình học. Cho trước đường thẳng p và
Vẽ đường thẳng vuông góc với p tại M
Dùng compa vẽ đường tròn (M; r1) cắt p tại A và B. Vẽ các đường tròn (A;r2) và (B; r2) với r2 > r1.
Các đường tròn này cắt nhau tại E và F thì đường thẳng EF vuông góc p tại M. Bây giờ ta theo một trong hai cách vẽ nêu trên vẽ đường thẳng qua M vuông góc a tại H và đường thẳng qua M vuông góc với b tại K
b) Vẽ đường thẳng xx’ vuông góc với MH tại M và đường thẳng yy’ vuông góc với MK tại M thì xx’ // a (vì cùng vuông góc với MH) và yy’ //b.
c) Giả sử a cắt yy’ tại N và b cắt xx’ tại P. Một số cặp góc bằng nhau là x’My’ và x’PK, HNM và MPK.
Một số cặp góc bù nhau, chẳng hạn như HNM và NMx’, KPM và PMy’.
Lời giải
a) Sử dụng êke
- Đặt một cạnh góc vuông đi qua điểm M, dịch chuyển cạnh còn lại trùng với đường thẳng a. Ta vẽ được đường thẳng MH ⊥ a.
- Làm tương tự ta vẽ được đường thẳng MK ⊥ b.
b) Sử dụng êke
- Đặt êke sao cho điểm góc vuông đi qua điểm M, dịch chuyển êke để một cạnh vuông trùng với MH, ta vẽ được đường thẳng xx' ⊥ MH. Từ đó suy ra xx' // a (vì cùng ⊥ MH).
- Làm tương tự ta vẽ được đường thẳng yy' // b.
c) Giả sử a cắt yy' tại N và b cắt xx' tại P.
Trong trường hợp hình d) thì a và b không song song với nhau vì tổng hai góc trong cùng phía không bằng \(180^0\)
trong hình a) ta có : 180 - 36 =144 (vì 2 góc bù nhau )
vậy a song song b (vì 2 góc đồng vị bằng nhau)
trong hình b) ta có : a song song b (vì 2 so le ngoài bằng nhau )
trong hình c) ta có : 180 - 50 =130 (vì 2 góc bù nhau )
vậy a song song b (vì 2 góc đồng vị bằng nhau )
trong hình d) a không song song với b ( vì hai góc trong cùng phía không bù nhau )
Mình ms vào lớp 7 nên chắc cx ko bik, giải thế này đúnng ko sao nhưng sai góp ý giùm nha.
Vì c song song vs a; c song song vs b
=> a có song song vs b
Dựa vào tính chất trung gian hoặc bắc cầu đó nha bạn