Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C O / / // // a) Chứng minh \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\)
Ta có: \(\overrightarrow{AC}-\overrightarrow{CD}=\overrightarrow{AD}\left(đpcm\right)\) ( vì \(\overrightarrow{BA}=\overrightarrow{CD}\) )
b) Chứng minh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)
Ta có: \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) ( theo quy tắc hình bình hành )
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\left(đpcm\right)\)
bài này chả khó áp dụng 1 bước là ra ngay điều cần chứng minh rồi
Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)
\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
\(=\cos150^o+\sin30^o+\tan60^o\)
\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)
\(=\frac{\sqrt{3}+1}{2}\)
b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)
\(=\sin90^o+\cos30^o+\cos0^o\)
\(=1+\frac{\sqrt{3}}{2}\)
\(=\frac{2+\sqrt{3}}{2}\)
a/ \(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)
b/ \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|=a+a=2a\)
c/
\(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=2\left|\overrightarrow{OB}\right|=2\sqrt{a^2-\frac{a^2}{4}}=a\sqrt{3}\)
a)
Giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MB}-\overrightarrow{MD}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+\left(\overrightarrow{MC}-\overrightarrow{MD}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (\(\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) do tứ giác ABCD là hình chữ nhật).
Vậy điều giả sử đúng. Ta có điều phải chứng minh.
b) Theo quy tắc hình bình hành:
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\).
Áp dụng quy tắc 3 điểm:
\(\left|\overrightarrow{AB}-\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{DA}\right|=\left|\overrightarrow{DB}\right|=DB\).
Do tứ giác ABCD là hình chữ nhật nên AC = BD.
Vì vậy: \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\).
\(\widehat{BAD}=60^0\Rightarrow BD=a\) ; \(AC=2OA=2.\frac{a\sqrt{3}}{2}=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{BA}-\overrightarrow{BC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}\right|=a\sqrt{3}\)