K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

a

Dễ thấy \(\Delta\)BEC và \(\Delta\)DCF đồng dạng ( g.g ) nên \(\frac{BE}{DC}=\frac{EC}{CF}=\frac{BC}{DF}\)

\(\Rightarrow\)BE.DF=BC.DC=BC2 không đổi

b

Ta có:^ABD=\(\frac{1}{2}\)^ABC=\(\frac{1}{2}\)1200=600 \(\Rightarrow\)^EBD=1800-600=1200

Tương tự:^BDF=1200

Ta có:\(\frac{EB}{BC}=\frac{CD}{DF}\Rightarrow\frac{BE}{BD}=\frac{BD}{DF}\) ( để ý góc A bằng 600 và ABCD là hình thoy )

Khi đó \(\Delta\)EBD và \(\Delta\)BDF đồng dạng ( c.g.c ) \(\Rightarrow\)^DBF=^BED

Mà ^BED+^BDI=1200 nên ^DBI+^BDI=1200 hay ^BID=1200

c

Để nghĩ sau

3 tháng 3 2020

Cảm ơn bạn nhiều nha, bạn giỏi quá. Đây là lần thứ 2 mình đăng câu hỏi, mình cần rất gấp mà lần đầu không ai giúp mình :(((

7 tháng 11 2017

E A D C B G H I K F O

b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.

7 tháng 11 2017

Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn

23 tháng 9 2017

 Leo có nâng cao phát triển toán 8 tập 1 không bài 3 phần hình trong đó ấy, lười viết nên cứ vào đó mà tra nhé