Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Dễ thấy \(\Delta\)BEC và \(\Delta\)DCF đồng dạng ( g.g ) nên \(\frac{BE}{DC}=\frac{EC}{CF}=\frac{BC}{DF}\)
\(\Rightarrow\)BE.DF=BC.DC=BC2 không đổi
b
Ta có:^ABD=\(\frac{1}{2}\)^ABC=\(\frac{1}{2}\)1200=600 \(\Rightarrow\)^EBD=1800-600=1200
Tương tự:^BDF=1200
Ta có:\(\frac{EB}{BC}=\frac{CD}{DF}\Rightarrow\frac{BE}{BD}=\frac{BD}{DF}\) ( để ý góc A bằng 600 và ABCD là hình thoy )
Khi đó \(\Delta\)EBD và \(\Delta\)BDF đồng dạng ( c.g.c ) \(\Rightarrow\)^DBF=^BED
Mà ^BED+^BDI=1200 nên ^DBI+^BDI=1200 hay ^BID=1200
c
Để nghĩ sau
Cảm ơn bạn nhiều nha, bạn giỏi quá. Đây là lần thứ 2 mình đăng câu hỏi, mình cần rất gấp mà lần đầu không ai giúp mình :(((
E A D C B G H I K F O
b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.
Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn
Leo có nâng cao phát triển toán 8 tập 1 không bài 3 phần hình trong đó ấy, lười viết nên cứ vào đó mà tra nhé