K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

            ABCD1520HI

a) 

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=20\left(cm\right)\)

BD là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)

\(\Leftrightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{AB}{2}=\frac{15}{2}=7,5\left(cm\right)\)

b)

Xét \(\Delta ABC\)và \(\Delta HBA\)CÓ:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (gt)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}=\frac{AC}{AH}\Rightarrow\hept{\begin{cases}AH=\frac{AB.AC}{BC}\\HB=\frac{AB^2}{BC}\end{cases}\Leftrightarrow\hept{\begin{cases}AH=\frac{15.20}{25}=12\left(cm\right)\\HB=\frac{15^2}{25}=9\left(cm\right)\end{cases}}}\)

c)

Xét \(\Delta ABD\)và \(\Delta HBI\)có;

\(\widehat{BAD}=\widehat{BHI}=90^o\)

\(\widehat{ABD}=\widehat{HBI}\left(gt\right)\)

SUY RA \(\Delta ABD\)đồng dạng với \(\Delta HBI\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\Leftrightarrow AB.BI=BD=HB\)

d)

\(\Delta ABD\)đồng dạng với \(\Delta HBI\) ( Theo câu c)

\(\frac{AD}{HI}=\frac{AB}{HB}\Rightarrow HI=\frac{AD.HB}{AB}=\frac{7,5.9}{15}=4,5\left(cm\right)\)

Ta có:

\(AI=AH-HI=12-4,5=7,5\left(cm\right)\)

Mà AD=7,5 cm

nên \(\Delta ADI\)cân tại A

e)

\(\Delta ABD\)đồng dạng vớI \(\Delta HBI\)( Theo câu c)

\(\Rightarrow\frac{AD}{IH}=\frac{BD}{BI}\Leftrightarrow AI.BI=BD.IH\)

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0
25 tháng 12 2017

Câu hỏi của Nguyễn Thiên Anh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

Xét ΔIAB và ΔICD có

góc IAB=góc ICD
goc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IB/ID=AB/CD=BM/MC

=>IM//DC

=>IM vuông góc AD