Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét hình thang MNPQ có
I là trung điểm của MQ
K là trung điểm của NP
Do đó: IK là đường trung bình của hình thang MNPQ
Suy ra: \(IK=\dfrac{MN+QP}{2}=10\left(cm\right)\)
E là TĐ của MQ, F là TĐ của NP
=> EF là đ trung bình của hình thang MNPQ
=> EF//MN
hay ED//MN
mà E là TĐ của MQ
=> D là TĐ của QN
=> ED là đ trung bình của Δ MQN
=> ED=1/2MN(1)
Tương tự: BF=1/2MN(2)
Từ 1 và 2 => ED=BF
=> ED + DB=BF+DB => EB=FD
b,do EF là đ trung bình của hình thang MNPQ
=>\(EF=\dfrac{MN+PQ}{2}\)= \(\dfrac{3+5}{2}\)=4(cm) (3)
Do ED=BF=1/2MN
=> ED=BF=\(\dfrac{3}{2}\)(cm) (4)
Từ 3 và 4 => BD= EF-ED-BF=1(cm)
Theo tính chất: Hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường, ta suy ra I là trung điểm của NQ và MP.
Xét tam giác MQN có I là trung điểm NQ, IE // MN nên IE là đường trung bình tam giác.
Vậy nên IE = MN/2
Tương tự IF là đường trung bình tam giác ANP nên IF = MN/2
Vậy nên IE = IF hay I là trung điểm EF.
ta có MNPQ là hình thang=>MN//PQ
mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)
=>tam giác MNO cân tại O=>MO=NO
=>tam giác QOP cân tại O=>OQ=Op
=>MO+OP=NO+OQ=>NQ=MP
=>MNPQ là hình thang cân
\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)
\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)
mà EF//PQ=>EF//MN
=>MNFE là hình thang(3)
từ (1)(3)=>MNFE là hình thang cân
=>EFPQ là hình thang(4)
(2)(4)=>EFPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOPQ cân tại O
Ta có: OM+OP=MP
ON+OQ=QN
mà OM=ON
và OP=OQ
nên MP=QN
Hình thang MNPQ có MP=QN
nên MNPQ là hình thang cân
Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)
Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)
nên EMNF là hình thang cân
Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)
nên EQPF là hình thang cân
a) E là trung điểm của MQ, F là trung điểm của NP
=> EF là đường trung bình của hình thang MNPQ
=> EF // PQ
=> EFPQ là hình thang
b) EF là đường trung bình của hình thang MNPQ
=> EF=\(\frac{MN+PQ}{2}\)
Em tự tính nhé!
M N P Q A B E F
Xét hình thang MNPQ có A là trung điểm MQ và B là trung điểm NP
=> AB là đường trung bình của hình thang MNPQ
=> AB//MN//PQ
Xét tam giác MQN có: A là trung điểm MQ và AE//MN
=> AE là đường trung bình của tam giác QMN
=> E là trung điểm QN
=> EN=EQ
Tương tự xét tam giác PMN có BF là đường trung bình
=> F là trung điểm MP
=> FM=FP
b) AB là đường trung bình của hình thang MNPQ
=> AB=(MN+QP):2=6 (cm)
AE là đường trung bình của tam giác MQN
=> AE=1/2 MN =1/2 .4=2 (cm)
BF là đường trung bình của tam giác MNP
=> BF =1/2 MN=2 (cm)
=> EF=AB-AE-BF=6-2-2=2 (cm)
a: Xét hình thang MNPQ có
A là trung điểm của MQ
B là trung điểm của NP
Do đó: AB là đường trung bình của hình thang MNPQ
Suy ra: AB//MN//PQ
Xét ΔQMN có AI//MN
nên \(\dfrac{AI}{MN}=\dfrac{AQ}{QM}=\dfrac{1}{2}\left(1\right)\)
Xét ΔPMN có KB//MN
nên \(\dfrac{KB}{MN}=\dfrac{1}{2}\left(2\right)\)
Từ (1) và (2) suy ra AI=KB
a: Xét hình thang MNPQ có
E là trung điểm của MQ
F là trung điểm của NP
Do đó: EF là đường trung bình của hình thang MNPQ
Suy ra: EF//MN//QP
Xét ΔQMN có
E là trung điểm của QM
EA//MN
Do đó: A là trung điểm của NQ
hay NA=QA