K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Xét tam giác ADE và BCF có:

    góc E = góc F=90 độ 

    AD=BC ( ABCD là hình thang cân)

    góc D = góc C   

=> tam giác ADE = tam giác BCF (ch-gn)

quá dễ luôn

=> AE=BF ( 2 cạnh tương ứng)

  

30 tháng 12 2018

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

25 tháng 8 2020

A B C D E F

Vì tứ giác \(ABCD\)là hình thang cân

     \(\Rightarrow\)\(\hept{\begin{cases}AD=BC\\\widehat{ADC}=\widehat{BCD}\end{cases}}\)

Xét \(\Delta AED\)vuông tại \(E\)và  \(\Delta BFC\)vuông tại \(F\)có:

                      \(AD=BC\)( chứng minh trên )

                   \(\widehat{ADC}=\widehat{BCD}\)( chứng minh trên )

  \(\Rightarrow\)\(\Delta AED\)vuông tại \(E\)\(=\) \(\Delta BFC\)vuông tại \(F\)( CH và GN )

  \(\Rightarrow\)\(DE=CF\)( hai cạnh tương ứng )

21 tháng 4 2017

Bài giải:

Xét hai tam giác vuông AED và BFC

Ta có: AD = BC (gt)

(gt)

Nên ∆AED = ∆BFC (cạnh huyền - góc nhọn)

Suy ra: DE = CF

30 tháng 12 2018

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

29 tháng 9 2018

mk bít lm nhưng mk dùng máy tính ko bít kẻ như thế nào dc

30 tháng 12 2018

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

11 tháng 2 2017

Giải bài 12 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

2 tháng 8 2018

Lý thuyết: Hình thang cân | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình thang cân nên AD = BC

+ Xét tam giác vuông ADE có

Xét tứ giác ABFE có AB// EF nên là hình thang. Lại có hai cạnh bên AE// BF (cùng vuông góc CD ) nên AE = BF (3)

Từ ( 1 ), ( 2 ) và ( 3 ) ⇒ DE = CF (do AD = BC và AE = BF )

18 tháng 7 2018

A B C D E F

Xét 2 tam giác vuông \(\Delta AED\)Và \(\Delta BFC\)   CÓ :

             \(\widehat{ADE}=\widehat{BCF}\)( Hình thang cân nên 2 góc kề đáy bằng nhau)

             \(AD=BC\)( hình tháng cân có 2 cạnh bên bằng nhau )

=> 2 tam giác bằng nhau ( cạnh huyền - góc nhọn )

=> \(DE=CF\)( 2 cạnh tương ứng )

     

30 tháng 12 2018
Vì hình thang ABCD cân AD = BC; Ĉ = D̂ Xét hai tam giác vuông AED và BFC có: AD = BC Ĉ = D̂ ⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn) ⇒ DE = CF.