Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H E Cho hình thang cân ABCD (AB//CD) có 2 đường chéo vuông góc. Biết đường cao AH=h. Tính tổng 2 đáy (chỉ em cách vẽ nữa ạ)
*Cách vẽ:
nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo,
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc
*Tính AB + CD:
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h
=> tổng 2 đáy AB + CD = 2h
nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo,
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc
*Tính AB + CD:
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h
=> tổng 2 đáy AB + CD = 2h
kẻ AE//BD , AE giao CD = E
=> AE= BD ( theo nhận xét )
=> AB = ED ( theo nhận xét 2 )
ABCD là hình thang cân
=> AC = BD ( t/c hình thang cân )
mà AE = BD ( cmt )
Bài 1 : Vì hình thang ABCD cân
=> AD = BC
=> ADC = BCD
=> AC = BD
Xét ∆ACD và ∆BDC ta có :
AD = BC
ADC = BCD
AC = BD
=> ∆ACD = ∆BDC (c.g.c)
=> DAC = CBD
Mà DAB = CBA ( hình thang ABCD cân )
=> OAB = OBA
=> ∆ OAB cân
Mà DOC = AOB = 60°
=> ∆OAB đều ( trong ∆ cân có 1 góc = 60° thì ∆ đó là ∆ đều )
=> AB = BO = AO (1)
Xét ∆ ABC và ∆BAD ta có :
DAB = ABC ( cmt)
AB chung
AD = BC
=> ∆ ABC = ∆BAD(c.g.c)
=> ACB = ADB
Mà ADC = BCD (cmt)
=> ODC = OCD
=> ∆ODC cân tại O
Mà DOC = 60°
=> ∆ODC đều
=> OD = OC = DC (2)
Từ (1) và (2)
Bạn tự cộng các cạnh vào với nhau nhé
Bài 2) Kẻ BK vuông góc với CD
Xét ∆ vuông ADH và ∆ vuông BCK ta có :
AD = BC
ADC = BCD
=> ∆ADH = BCK ( ch - gn)
=> AH = BK
=> DH = CK
Ta có AH vuông góc với DC
BK vuông góc với CD
=> AH //BK
Xét ∆ABK và ∆AHK ta có :
AH = BK(cmt)
AK chung
HAK = AKB ( so le trong)
=> ∆ABK = ∆AHK (c.g.c)
=> HK = AB
Ta có : CD = DH + HK + KC
=> DH + CK = CD - HK
Mà HK = AB (cmt)
=> DH + CK = CD - AB
Vì DH = CK
Mà 2DH = CD - AB
=> DH = ( CD - AB )/2
=> 2CK = CD - AB
=> CK = ( CD- AB)/2
=> DH = (CD - AB)/2 (dpcm)
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
Ta có S ABCD = \(\frac{AH\left(AB+CD\right)}{2}\)
\(=\frac{a\left(AB+CD\right)}{2}\)
\(=\frac{a}{2}.AB+CD\)