K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

\(a,\overrightarrow{AB}-\overrightarrow{DA}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{0}=\overrightarrow{AD}\)

\(b,\overrightarrow{AM}=\dfrac{\overrightarrow{AO}+\overrightarrow{AB}}{2}=\dfrac{\overrightarrow{AB}}{2}+\dfrac{\dfrac{1}{2}\overrightarrow{AC}}{2}=\overrightarrow{\dfrac{AB}{2}}+\dfrac{1}{4}\overrightarrow{AC}\)

\(=\overrightarrow{\dfrac{AB}{2}}+\dfrac{\overrightarrow{AB}+\overrightarrow{BC}}{4}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{\overrightarrow{BC}}{4}=\dfrac{1}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{AB}\left(1\right)\)

\(\overrightarrow{AN}=\overrightarrow{BN}-\overrightarrow{BA}=k.\overrightarrow{BC}+\overrightarrow{AB}\left(2\right)\)

\(\left(1\right)\left(2\right)A,M,N\) \(thẳng\) \(hàng\Leftrightarrow\dfrac{k}{\dfrac{1}{4}}=\dfrac{1}{\dfrac{3}{4}}\Leftrightarrow k=\dfrac{1}{3}\)

16 tháng 9 2016

bài 1

a CO-OB=BA

<=.> CO = BA +OB

<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM

b AB-BC=DB

<=> AB=DB+BC

<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM

Cc DA-DB=OD-OC

<=> DA+BD= OD+CO

<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM

d DA-DB+DC=0

VT= DA +BD+DC

= BA+DC

Mà BA=CD(CMT)

=> VT= CD+DC=O

 

16 tháng 9 2016

BÀI 2

AC=AB+BC

BD=BA+AD

=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)

 

31 tháng 8 2019

a) Ta có: \(\overrightarrow{NC}+\overrightarrow{MC}=\overrightarrow{NC}+\overrightarrow{CE}=\overrightarrow{NE}\)

Ta có: \(\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AN}\)

Ta có: \(\overrightarrow{A\text{D}}+\overrightarrow{DE}=\overrightarrow{A\text{E}}\)

b) Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AC}\\\overrightarrow{AB}+\overrightarrow{A\text{D}}=\overrightarrow{AC}\end{matrix}\right.\)

\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{A\text{D}}\)

13 tháng 10 2019

E ở đâu vậy bạn, đề k cho, bạn vẽ hình ra giúp mình nhed

2 tháng 9 2021
xét tam giác ABD có:
M là trung điểm AB
Q là trung điểm AD
suy ra MQ là đường trung bình của tam giác ABD
suy ra MQ // BD, MQ = 1/2.BD (1)
xét tam giác BCD có:
N là trung điểm BC
P là trung điểm DC
suy ra NP là đường trung bình của tam giác BCD
suy ra NP//BD, NP = 1/2.BD (2)
từ (1), (2) suy ra NP//MQ và NP = MQ
suy ra vecto NP = MQ
chứng minh tương tự trên thì ta cũng được vecto NM = PQ
NV
2 tháng 9 2021

Ta có M là trung điểm AB, N là trung điểm BC

\(\Rightarrow\) MN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\)

Hoàn toàn tương tự, PQ là đường trung bình tam giác ACD

\(\Rightarrow\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{MN}=\overrightarrow{QP}\)

a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)

M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC

nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)

b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)

Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)

\(\Rightarrow NI=DK\)(2)

(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)

14 tháng 9 2021

\hept là j???