K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2023

*SABC=1/3SABCD(Vì có đáy = đáy bé và có chiều cao=chiều cao hình thang ABCD)

=>SABCD=24x3=72 cm2

Đáp số: 72 cm2

19 tháng 3 2020

Diện tích hình tam giác DOC là:

     \(\text{128 : 4 × 3= 48 ( cm )}\)

   Đáp số :\(\text{ 48cm}\)

19 tháng 3 2020

Đáp án:

48

Giải thích các bước giải:

Diện tích hình tam giác DOC là:

     128 : 4 × 3= 48 ( cm2 )

   Đáp số : 48cm2

Bài này m dùng định lý Ta-lét đc nhưng đây là toán lớp 5 thật à"?

23 tháng 4 2017

oa toán hình lp 5 này của bn khó quá ha, hồi mình hok lp 5 đâu có mấy kiểu này nhỉ ^^

10 tháng 8 2023

loading...

a, Dựng chiều cao CG của \(\Delta\)BCD và chiều cao AE của \(\Delta\) ABD

\(\dfrac{S_{ABD}}{S_{BCD}}\) = \(\dfrac{AE}{CG}\) (vì hai tam giác có chung cạnh đáy BD nên tỉ số diện tích là tỉ số hai chiều cao tương ứng)

\(\dfrac{S_{ABD}}{S_{BCD}}\) = \(\dfrac{AB}{CD}\) (vì hai tam giác có chiều cao bằng nhau nên tỉ số diện tích hai tam giác là tỉ số hai cạnh đáy)

⇒ \(\dfrac{AE}{CG}\) = \(\dfrac{AB}{CD}\) = \(\dfrac{1}{3}\)

\(\dfrac{S_{AOB}}{S_{BOC}}\) = \(\dfrac{AE}{CG}\) ( hai tam giác có chung cạnh đáy OB nên tỉ số diện tích là tỉ số hai chiều cao tương ứng)

\(\dfrac{S_{AOB}}{S_{BOC}}\) = \(\dfrac{AO}{OC}\) ( vì hai tam giác có chiều cao bằng nhau nên tỉ số diện tích là tỉ số hai cạnh đáy)

⇒ \(\dfrac{AE}{CG}\) = \(\dfrac{AO}{OC}\) = \(\dfrac{1}{3}\) 

Chứng minh tương tự ta có: \(\dfrac{BO}{OD}\) = \(\dfrac{1}{3}\)

b, SABD = SABC ( vì hai tam giác có chung cạnh đáy AB và hai chiều cao bằng nhau)

    SABD = SABO + SAOD = SAOB + SBOC = SABC

    SAOD  \(\times\)  1   = SBOC

    SAOD    \(\times\) 1 = SAOD

    SAOD \(\times\) \(\dfrac{1}{3}\)  = SAOB   (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BD và \(\dfrac{OB}{OD}\) = \(\dfrac{1}{3}\))

    SAOD  \(\times\)  3 = SDOC  ( vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AC và \(\dfrac{AO}{OC}\) =\(\dfrac{1}{3}\))

  Cộng các vế trên ta với nhau ta có diện tích hình thang ABCD bằng:

    1 + 1 + \(\dfrac{1}{3}\) + 3 = \(\dfrac{16}{3}\) ( diện tích hình tam giác AOD)

    Diện tích tam giác AOD là: 32 : \(\dfrac{16}{3}\) = 6 (m2)

ĐS...

 

 

    

 

 

 

 

 

9 tháng 8 2023

Mọi ng giải nhanh giúp mình nhé, mình đag cần gấp lắm, mai đi học r, cảm ơn mng nh🥹

26 tháng 1 2022

Ta có: SDOC \(=\dfrac{1}{4}S_{ABCD}\)

⇒ \(S_{DOC}=\dfrac{1}{4}.128=32\left(cm^2\right)\)