K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

12 tháng 12 2023

a: Xét ΔEAB và ΔECM có

\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)

\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)

Do đó: ΔEAB đồng dạng với ΔECM

=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)

b: Xét ΔFAB và ΔFMD có

\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)

\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)

Do đó: ΔFAB đồng dạng với ΔFMD

=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)

Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)

\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

mà MD=MC

nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

nên FE//AB

Ta có: FE//AB

AB//CD

Do đó: FE//CD

c: Xét ΔADM có HF//DM

nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)

Xét ΔBDM có FE//DM

nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

Xét ΔBMC có EG//MC

nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

và MC=MD

nên FE=EG

Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)

=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)

=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)

=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)

=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)

=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)

mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)

nên HF=FE

mà FE=EG

nên HF=FE=EG

17 tháng 3 2023

dhfxfxd

a: Xét ΔIAB và ΔIMD có

góc IAB=góc IMD

góc AIB=góc MID

=>ΔIAB đồng dạng với ΔIMD

=>AB/MD=IA/IM=AB/MC

Xet ΔKAB và ΔKCM có

góc KAB=góc KCM

góc AKB=góc CKM

=.ΔKAB đồng dạng với ΔKCM

=>AB/KC=KB/KC

=>KB/KC=IA/IM

=>IK//AB

b: Xét ΔAMD có IE//MD

nên IE/MD=AE/AD=AI/AM

Xét ΔBMC có KF//MC

nên KF/MC=BF/BC

=>IE/MD=KF/MC

=>IE=KF

IK//AB

=>IK/AB=MI/MA

=>\(IK=AB\cdot\dfrac{MI}{MA}=MD\cdot\dfrac{IA}{IM}\cdot\dfrac{MI}{MA}=MD\cdot\dfrac{IA}{MA}\)

\(=\dfrac{1}{2}\cdot CD\cdot\dfrac{IA}{MA}\)

IE/DM=AI/AM

=>\(IE=\dfrac{1}{2}\cdot CD\cdot\dfrac{AI}{AM}\)

=>IE=IK=KF

c: \(CD+AB=45\cdot2:6=90:6=15\left(cm\right)\)

CD=2/3*15=10cm

AB=15-10=5cm

17 tháng 2 2020

A B C D M E F I K

a) Do \(AB//DC\Rightarrow AB//DM\) \(\Rightarrow\frac{AB}{DM}=\frac{AI}{IM}\)( Talet ) (1)

Tương tự ta có : \(\frac{AB}{CM}=\frac{BK}{KM}\) ( Talet ) (2)

Lại có : \(DM=CM\left(gt\right)\) nên từ (1) và (2)

\(\Rightarrow\frac{AI}{IM}=\frac{BK}{KM}\)

Xét \(\Delta ABM\) có \(\frac{AI}{IM}=\frac{BK}{KM}\) (cmt) , \(I\in AM,K\in BM\)

\(\Rightarrow IK//AB\) ( định lý Talet đảo ) 

b) Áp dụng định lý Talet lần lượt ta được :

+) \(EI//DM\Rightarrow\frac{EI}{DM}=\frac{AI}{AM}\) (3)

+) \(IK//MC\Rightarrow\frac{AI}{AM}=\frac{AK}{AC}=\frac{IK}{MC}\)(4)

+) \(KF//MC\Rightarrow\frac{BK}{BM}=\frac{KF}{MC}\) (5)

Mà : \(DM=CM\left(gt\right)\)

Nên tuqd (3) (4) và (5) \(\Rightarrow EI=IK=KF\) (đpcm)

17 tháng 2 2020

a ) Hướng giải : 

  • Cần chứng minh tứ giác ABDM và tứ giác ABMC là hình bình hành.
  • Suy ra KM // AD và IM // BC
  • Áp dụng tính chất đường trung bình vào 2 tam giác ADC và DBC
  • IK là đường trung bình của tam giác ABM
  • IK // AB // DC

b ) Hướng giải ;

  • Đầu tiên, cần chứng minh 4 điểm E, I, K, F thẳng hàng theo Tiên đề Ơ - clit
  • Tiếp tục dùng tính chất đường trung bình vào các tam giác ADM, BMC
  • Cuối cùng, EI = IK = KF  \(\left(=\frac{DM}{2}=\frac{MC}{2}\right)\)
6 tháng 3 2018