K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

Qua $O$ kẻ đường thẳng vuông góc với 2 đáy \(AB,CD\) cắt hai đáy lần lượt tại \(M,N\)

Dựa vào định lý Tales với \(AB\parallel CD\) ta dễ dàng có những điều sau:

\(\triangle AOM\sim \triangle CON\Rightarrow \frac{OM}{ON}=\frac{OA}{OC}\)

\(\triangle AOB\sim \triangle COD\Rightarrow \frac{AO}{CO}=\frac{AB}{CD}\)

\(\Rightarrow \frac{OM.AB}{ON.CD}=\left (\frac{OA}{OC}\right)^2=\frac{S_{OAB}}{S_{COD}}(1)\)

Lại có: \(\frac{S_{BOC}}{S_{OAB}}=\frac{OC}{OA}\Rightarrow \frac{S_{BOC}^2}{S_{OAB}^2}=\left (\frac{OC}{OA}\right)^2\) \((2)\)

Lấy $(1)$ nhân $(2)$ suy ra:

\(\frac{S_{BOC}^2}{S_{OAB}.S_{COD}}=1\Rightarrow S_{OAB}.S_{COD}=11^2=121cm^2\)

2 tháng 3 2015

SABCD = (9 +25)2

ht la gi h thoi hay hinh thang

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

3 tháng 1 2016

xin lỗi, em mới học lớp 6

7 tháng 9 2020

A B C D K E F H

a, ABCD là hình thang (gt) => AB // CD (đn)

=> OA/OC = OB/OD (talet)                                          (1)

có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)

=> FO/OB = OE/OA ; xét tg AOB 

=> FE // AB (talet đảo)

b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE 

=> ^DAO = ^OEB và ^ADO = ^OBE (đl)

xét tg ADO và tg EBO 

=> tg ADO đồng dạng với tg EBO (g-g)

=> AO/OE = DO/OB                  (2)

+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)

=> AB/EF = CD/AB 

=> AB^2  = EF.CD 

c, kẻ AH _|_ BD ; CK _|_ BD

có S1 = OB.AH/2 ; S2 = OD.CK/2  => S1.S2 = OB.AH.OD.CK/4

CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4

=> S1.S2 = S3.S4

14 tháng 12 2016

A B C D O a b

Gọi a là độ dài đường vuông góc hạ từ C xuống BD ; 

      b là độ dài đường vuông góc hạ từ B xuống AC

Ta có :

\(S_{AOB}.S_{COD}=\frac{b.AO}{2}.\frac{a.OD}{2}=\frac{ab.AO.OD}{4}\)

\(\left(S_{BOC}\right)^2=\frac{a.OB}{2}.\frac{b.OC}{2}=\frac{a.b.OB.OC}{4}\)

Hai biểu thức trên bằng nhau khi \(AO.OD=OB.OC\)

Điều này còn hơn vô lý.

18 tháng 12 2016

Nó đúng mà bạn. lên mạng rất nhiều người chứng minh được. nhưng vì chưa học nên k hiểu mik mới phải lên đây hỏi.