Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và tam giác BDC
có \(\widehat{DAB}=\widehat{CBD}\)
\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)
nên tam giác ABD đồng dạng với tam giác DBC
2
Xét tam giác ADC có
M là trung điểm của AD
N là trung điểm của AC
suy ra MN là đường trung bình của tam giác ADC
nên MN // DC (1)
Xét tam giác ABC có
K là trung điểm của BC
N là trung điểm của AC
suy ra NK là đường trung bình của tam giác ABC
nên NK //AB
mà AB // CD
do đó NK // CD (2)
Từ (1), (2) và theo tiên đề ơ-clít ta có
NK trùng với MN
do đó M,N,K thẳng hàng
Hình bạn tự vẽ nhé !
Câu 1:
Xét tam giác ABD và tam giác DBC có
Góc DAB = góc CBD
Góc ABD = góc BDC ( so le trong AB // CD )
nên tam giác ABD đồng dạng tam giác DBC
Câu 2:
Xét tam giác ADC có:
M là trung điểm của AD
N là trung điểm của AC
=> MN là đường trung bình của tam giác ADC => MN // DC (1)
Xét tam giác ABC có:
K là trung điểm của BC
N là trung điểm của AC
=> NK là đường trung bình của tam giác ABC => NK // AB
mà AB / CD => NK // CD (2)
Từ (1) và (2) theo tiên đề Ơ - clit ta có:
NK trùng với MN => M, N, K thẳng hàng ( đpcm )
Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)
Ngu thế tự đi mà làm rảnh đâu mà chỉ tao còn ko biết làm còn đi tìm câu trả lời đây này nhá:v có câu trả lời thì nói chuyện nhá ko có cút đi đồ ngu
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
Áp dụng định lý 2 của đường trung bình trong hình thang
Có AB//CD => ABCD là hình thang. EF là đường trung bình của hình thang
Nên \(\text{EF}=\frac{CD+AB}{2}\) .
Sai rồi vì EF đâu phải đường trung bình đâu, E là trung điểm BD, F là trung điểm AC và đề bài yêu cầu chứng minh EF=(CD-AB)/2 mà.
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!