Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N
c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)
\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)
Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)
d) Áp dụng hệ quả định lí Ta-lét,ta có :
\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)
\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)
\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)
Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)
Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)
P/S : Bạn xem lại đề để có thể xác định E,F nhé
A B C D E F M 1 2 1
Cm: Xét tứ giác AFED có AF // DE (gt)
AD // FE (gt)
=> AFED là hình bình hành
b) Xét t/giác BFM và t/giác CEM
có: BM = MC (gt)
\(\widehat{B_1}=\widehat{C}\) (slt của AF // DC)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t/giác BFM = t/giác CEM (g.c.g)
=> S t/giác BFM = S t/giác CEM
Xét t/giác ADE và t/giác EAF
có AD = EF (do AFED là hình bình hành)
AF = AE ( ..........................)
AE : chung
=> t/giác ADE = t/giác EAF (c.c.c)
=> S t/giác ADE = S t/giác EAF (1)
Ta có: SAEF = SABME + SBFM = SABME + SMEC = SABCE (do SBFM = SMEG) (2)
Ta lại có: SABCD = SADE + SABCE = 2SADE
=> SADE = 1/2SABCD (3)
Từ (1); (2) và( 3) => SADE = SABEC = 1/2SABCD
sai đề hết:::)))
Cậu chắc chứ