K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

Giải chi tiết:

Dễ thấy, tứ diện A.A′BD�.�′�� có ba cạnh AB,AD,AA′��,��,��′ đôi một vuông góc.

Đặt d=d(A,(A′BD))�=�(�,(�′��)) ta có : 1d2=1AB2+1AD2+1AA′2=3⇒d=√331�2=1��2+1��2+1��′2=3⇒�=33.

31 tháng 3 2017

Giải bài 3 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 119 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Chụp ở đâu á =='

7 tháng 12 2019

Chọn D.

Xét hình chóp AA'BD có AA' = AB = AD và đôi một vuông góc với nhau nên

26 tháng 2 2018

Giải bài 3 trang 119 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có: ∆ ABC’ = ∆ C’CA = ∆ADC’=∆ AA’C’ =∆ C’B’A = ∆C’D’A (c.c.c)

⇒ Các đường cao hạ từ B; C; D; A’; B’; D’ xuống AC’ bằng nhau

( chú ý: các tam giác trên đều có chung cạnh AC’)

Gọi khoảng cách đó là h.

Ta có: CC’ = a; Giải bài 3 trang 119 sgk Hình học 11 | Để học tốt Toán 11

ΔC’AC vuông tại C, có hai cạnh góc vuông là CA và CC’. Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:

Giải bài 3 trang 119 sgk Hình học 11 | Để học tốt Toán 11

21 tháng 6 2016

ta có : 

\(V_{M.AB'C}=V_{B'.MAC}=\frac{B'B.S_{ABC}}{3}\)

Mà BB'=A'A=a

\(S_{AMC}=\frac{CD.AM}{2}=\frac{a.2a}{2.3}=\frac{a^2}{3}\)

=> \(V_{M.AB'C}=\frac{a^3}{9}\) (1)

=> dM,(AB'C)=\(\frac{3.V_{M.AB'C}}{S_{AB'C}}\)  (2)

tam giác AB'C cps \(AB=B'C=2\sqrt{3}\)

và \(AB=a\sqrt{2}\)

=>\(S_{AB'C}=\frac{a^2\sqrt{5}}{2}\)                    (3)

Từ (1), (2)&(3)

=> dM;(AB'C)=\(\frac{2a}{3\sqrt{a}}\)

21 tháng 6 2016

kkk.PNG

Pytago tính đuợc 3 cạnh ΔAMC

\(AC=a\sqrt{5}\);       \(AM=\frac{3a}{2}\),         \(MC=\frac{a\sqrt{5}}{2}\)

Dùng công thức HeronHeron =>\(S_{AMC}=\frac{3a^2}{4}\)

\(V_{M.AB'C}=V_{B.AB'C}=\frac{a^3}{4}\)

 

Mặt khác dùng công thức HeronHeron cũng tính được \(S_{AB'C}=\frac{3a^2}{2}\)

=> \(d_{\left(M;\left(AB'C\right)\right)}=\frac{3V_{M.AB'C}}{S_{AB'C}}=\frac{a}{2}\)

26 tháng 5 2017

Điểm A cách đều ba đỉnh, của tam giác đều A'BD vì ta có AB = AD = AA' = a, điểm C' cũng cách đều ba đỉnh của tam giác đều đó vì ta có :

\(C'B=C'D=C'A'=a\sqrt{2}\)

Vectơ trong không gian, Quan hệ vuông góc

23 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Điểm A cách đều ba đỉnh của tam giác đều A'BD vì ta có AB = AD = AA′ = a, điểm C' cũng cách đều ba đỉnh của tam giác đều đó vì ta có:

C′B = C′D = C′A′ = a√2

Vậy AC' là trục của đường tròn ngoại tiếp tam giác A'BD, tức là đường thẳng AC' vuông góc với mặt phẳng (A'BD) tại trọng tâm I của tam giác A'BD. Ta cần tìm khoảng cách A'I.

Ta có A′I = BI = DI = 2A′O/3 với O là tâm của hình vuông ABCD

Ta lại có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm C' cách đều ba đỉnh của tam giác đều CB'D', tính được khoảng cách từ C, B', D' tới đường chéo AC'.

7 tháng 7 2018

Chọn B.

18 tháng 7 2018

Đáp án D

Chọn hệ trục tọa độ như hình vẽ

24 tháng 11 2017

ĐÁP ÁN: C