K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Chọn A.

Để ý rằng hai khối lăng trụ đó có diện tích đáy bằng nhau, tỉ số hai đường cao tương ứng bằng 1/2.

16 tháng 12 2020

a.1/2

okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

16 tháng 8 2018

Đáp ấn căn 5 C

17 tháng 8 2018

cách giải ln nka bn

30 tháng 6 2016

M,N lần lượt là trung điểm BC,A'B

Chọn B

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó 2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\) 3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60....
Đọc tiếp

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó

2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\)

3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60. Góc giữa A'B và (ABC) bằng 30. Tính thể tích khối lăng trụ đó

4,hình chóp có đường cao bằng 12cm, đáy là tam giác ddeuf cạnh bằng 4cm. Tính thể tích

5,Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mp (ABCD) là điểm H trên cạnh AD sao cho AH= 2HD, (SBC) hợp với đáy một góc 60. Tính thể tích V của khối chóp S.ABCD A. \(\dfrac{a^3\sqrt{3}}{9}\) B, \(\dfrac{2a^3\sqrt{3}}{3}\) C, \(a^3\sqrt{3}\) D, \(\dfrac{a^3\sqrt{3}}{3}\)

0
20 tháng 5 2017

Khối đa diện

Khối đa diện

1 tháng 12 2017

Hỏi đáp Toán
Hình chiếu của A'A lên mp(ABC) là đường thẳng AH.
Suy ra góc giữa đường thẳng AA' và mp(ABC) bằng góc giữa hai đường thẳng AA' và AH.
\(A'H\perp mp\left(ABC\right)\) suy ra \(\left(AA',AH\right)=\widehat{A'AH}=60^o\).
\(AH=AC.sin60^o=\dfrac{a\sqrt{3}}{2}\).
\(A'H=AH.tan60^o=\dfrac{3a}{2}\).
Thể tích hình trụ là: \(\dfrac{1}{3}.S_{\Delta ABC}.A'H=\dfrac{1}{3}.a.a.sin60^o.\dfrac{3}{2}a=\dfrac{\sqrt{3}}{4}a^3\).
Đáp án : D.