K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')

Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)

Ta có  

Lại có 

 Ta luôn có 

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có  .

Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật 

Từ: 

2 tháng 11 2019

Đáp án D.

Gọi M là trung điểm BC, dựng 

∆ AA'G vuông tại G, GH là đường cao => A'G =  1 3

Vậy 

6 tháng 1 2018

Đáp án A

Gọi I là trung điểm của BC.

14 tháng 8 2016

Tam giác ABC vuông tại A, ta tính được AC:

\(AC^2=BC^2-AB^2=25a^2-9a^2=16a^2\Rightarrow AC-4a\)

Trong mặt phẳng (SAC), qua S kẻ SH vuông góc với AC, H thuộc AC
Ta có:
\(SH=SA.sin30^0=2a\sqrt{3}.\frac{1}{2}=a\sqrt{3}\)
\(AH=SA.cos30^0=2a\sqrt{3}.\frac{\sqrt{3}}{2}=3a\)
Thể tích khối chóp S.ABC:
 
\(V_{S.ABC}=\frac{1}{2}.SH.S_{\Delta ABC}=\frac{1}{3}.a\sqrt{3}.\frac{1}{2}.3a.4a=2\sqrt{3}a\)
Trong mặt phẳng đáy (ABC), qua H kẻ HK vuông góc với BC và cắt BC tại K
Tam giác HKC đồng dạng với tam giác BAC, ta được:
\(\frac{HK}{AB}=\frac{HC}{BC}=\frac{a}{5a}=\frac{1}{5}\rightarrow HK=\frac{1}{5}AB=\frac{1}{5}.3a=\frac{3}{5}a\)
Nối SK. Trong mặt phẳng (SHK), từ H kẻ HI vuông góc với SK
Ta chứng minh được HI vuông góc với mặt phẳng (SBC):
Ta có:
\(\begin{cases}HK\perp BC\\BC\perp SH\end{cases}\Rightarrow BC\perp\left(SHK\right)\Rightarrow BC\perp HI\)
mặt khác:
 BC_|_HI (1)
HI_|_SK(2)
từ (1) (2)=> HI_|_(SBC)
Khoảng cách từ điểm H đến mặt phẳng (ABC) là HI
Xác định khoảng cách từ A đến mặt phẳng (ABC)
Suy ra khoảng cách từ A đến mặt phẳng (SBC) được tính theo:
 
 
17 tháng 12 2019

đán áp B

26 tháng 10 2017

Đáp án B.

Do H là trung điểm AB nên 

=> d(B;(ACC'A'))= 2d(H;(ACC'A'))

Ta có A'H ⊥ (ABC) nên 

Gọi D là trung điểm của AC thì BD ⊥ AC

 Kẻ HE ⊥ AC, 

Ta có 

Trong (A'HE) kẻ HK ⊥ A'E, 

Suy ra = 2HK

Ta có 

Xét tam giác vuông A'AH có 

Xét tam giác vuông A'HE có 

NV
20 tháng 4 2023

Gọi D là trung điểm AB \(\Rightarrow A'D\perp\left(ABC\right)\) 

\(\Rightarrow CD\) là hình chiếu vuông góc của A'C lên (ABC)

\(\Rightarrow\widehat{A'CD}\) là góc giữa A'C và (ABC) \(\Rightarrow\widehat{A'CD}=60^0\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow A'D=CD.tan60^0=3a\)

Từ D kẻ \(DE\perp AC\) (E thuộc AC)

Mà \(A'D\perp\left(ABC\right)\Rightarrow A'D\perp AC\)

\(\Rightarrow AC\perp\left(A'DE\right)\Rightarrow\widehat{AED}\) là góc giữa (A'AC) và (ABC)

\(DE=AD.sinA=a.sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow A'E=\sqrt{A'D^2+DE^2}=\dfrac{a\sqrt{39}}{2}\)

\(\Rightarrow cos\widehat{A'ED}=\dfrac{DE}{A'E}=\dfrac{\sqrt{13}}{13}\)

NV
20 tháng 4 2023

loading...

18 tháng 10 2017

ĐÁP ÁN: D

NV
15 tháng 3 2022

Gọi D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AD\perp BC\\AD=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

Gọi E là trung điểm BD \(\Rightarrow\) HE là đường trung bình tam giác ABD

\(\Rightarrow\left\{{}\begin{matrix}HE||AD\Rightarrow HE\perp BC\\HE=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{4}\end{matrix}\right.\)

Mà \(B'H\perp\left(ABC\right)\Rightarrow B'H\perp BC\Rightarrow BC\perp\left(B'HE\right)\)

\(\Rightarrow\widehat{B'EH}\) là góc giữa (BCC'B') và đáy

\(\Rightarrow\widehat{B'HE}=60^0\)

\(\Rightarrow B'H=HE.tan60^0=\dfrac{3a}{4}\)

\(AA'||BB'\Rightarrow AA'||\left(BCC'B'\right)\Rightarrow d\left(AA';BC\right)=d\left(AA';\left(BCC'B'\right)\right)=d\left(A;\left(BCC'B'\right)\right)\)

Mà H là trung điểm AB \(\Rightarrow AB=2HB\Rightarrow d\left(A;\left(BCC'B'\right)\right)=2d\left(H;\left(BCC'B'\right)\right)\)

Từ H kẻ \(HK\perp B'E\)

Do \(BC\perp\left(B'HE\right)\Rightarrow\left(BCC'B'\right)\perp\left(B'HE\right)\)

 Mà B'E là giao tuyến (B'HE) và (BCC'B')

\(\Rightarrow HK\perp\left(BCC'B'\right)\Rightarrow HK=d\left(H;\left(BCC'B'\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HK^2}=\dfrac{1}{B'H^2}+\dfrac{1}{HE^2}\Rightarrow HK=\dfrac{B'H.HE}{\sqrt{B'H^2+HE^2}}=\dfrac{3a}{8}\)

\(\Rightarrow d\left(AA';BC\right)=2HK=\dfrac{3a}{4}\)

NV
15 tháng 3 2022

undefined