Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất của tỉ số lượng giác ta có:
+) Sin2α + Cos2α=1
hay \(\left(\dfrac{1}{3}\right)^2\)+Cos2α=1
\(\dfrac{1}{9}\)+Cos2α=1
Cos2α=\(\dfrac{8}{9}\)
⇒Cos α=\(\sqrt{\dfrac{8}{9}}\)=\(\dfrac{2\sqrt{2}}{3}\)
+) \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{\sqrt{2}}{4}\)
+)\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}\)=\(2\sqrt{2}\)
ta có : \(A=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\)
\(=\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\)
\(=\dfrac{1+cos\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1}{sin\alpha}\)
Kẻ DM _I_ AC (M thuộc AC)
\(\sin\alpha=\dfrac{DK}{DO}=\dfrac{DK}{\dfrac{BD}{2}}=\dfrac{2DK}{BD}\)
\(\dfrac{1}{2}\times AC\times BD\times\sin\alpha\)
\(=\dfrac{1}{2}\times AC\times BD\times\dfrac{2DK}{BD}\)
\(=AC\times DK\)
\(=S_{ABCD}\)
\(\left(AC\times DK=2\times\dfrac{1}{2}AC\times DK=2S_{ACD}=S_{ABCD}\right)\)
thank you very much