Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
ˆABH=ˆBDCABH^=BDC^
Do đó: ΔAHB∼∼ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
ˆADHADH^ chung
Do đó: ΔADH∼∼ΔBDA
Suy ra: ADBD=HDDAADBD=HDDA
hay AD2=HD⋅BD
a) vì ABCD là hình chữ nhật
nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )
Xét 2 tam giác AHB và BCD có
góc ABH = góc BDC
góc AHB = góc BCD =900
=> 2 tam giác AHB và BCD đồng dạng (g.g)
b) Xét 2 tam giác ADH và BDA có
góc ADH chung
góc AHD = góc BAD =900
nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{AD}\)
=> AD2=BD.DH
tam giác ABD vuông tại A
=> \(BD^2=AD^2+AB^2\)( Py-ta-go)
=>BD =10cm
mà AD2=DH.BD (cmt)
=> 62=DH.10
=> DH =3.6cm
tam giác ADH vuông tại H nên AD2=AH2+DH2 ( py-ta-go)
<=> 62-3.62=AH2
AH=\(\sqrt{6^2-3.6^2}\)=4.8cm
Hình:
A B C D H 8 6 1 1
~~~~
a/ Xét \(\Delta AHB\) và \(\Delta DAB\) có:
\(\widehat{BHA}=\widehat{DAB}\left(=90^o\right)\)
\(\widehat{B_1}:chung\)
=> \(\Delta AHB\) ~ \(\Delta DAB\left(g.g\right)\)(1)
Cmtt có: \(\Delta DAB\sim\Delta BCD\left(g.g\right)\)(2)
Từ (1), (2) => \(\Delta AHB\sim\Delta BCD\)(t/c bắc cầu)
b/ Cmtt như ý a ta có: \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\)=> AD2 = DH . DB (đpcm)
c/ +) Áp dụng pytago vào tam giác ABD vuông tại A có:
\(DB^2=AB^2+AD^2=8^2+6^2=100\) => DB = 10cm
Có: \(AD^2=DH\cdot DB\) (ý b)
hay \(6^2=DH\cdot10\Rightarrow DH=\dfrac{36}{10}=3,6\)cm
+) Áp dụng pytago vào \(\Delta ADH\left(\widehat{DHA}=90^o\right)\) có:
\(AD^2=DH^2+AH^2\Rightarrow AH=\sqrt{AD^2-DH^2}\)
\(=\sqrt{6^2-3,6^2}=4,8cm\)
Vậy......
a) Vì ABCD là HCN (gt) => \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\) (= 90 độ) và AB // CD
=> \(\widehat{ABD}=\widehat{BDC}\)
xét tam giác AHB và tam giác BCD có:
\(\widehat{ABD}=\widehat{BDC}\) (cmt)
\(\widehat{AHB}=\widehat{BCD}\) (= 90 độ)
=> tam giác AHB \(\sim\) tam giác BCD(gg)
b) xét tam giác AHD và tam giác BAD có:
\(\widehat{AHD}=\widehat{BAD}\) (= 90 độ)
\(\widehat{ADB}\) chung
=> tam giác AHD \(\sim\) tam giác BAD(gg)
=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (các cạnh t/ứ tỉ lệ)
=> AD . AD = BD . HD => \(AD^2\) = BD . HD
c) Vì ABCD là HCN(gt) => AD = BC
Mà BC = 6 cm => AD = 6 cm
xét tam giác AED vuông tại A
Theo đ/lí Pytago:
\(BD^2\) = \(AD^2+AB^2\)
=> \(BD^2\)= 36 + 64
=> \(BD^2\)= 100
=> BD = 10 cm
VÌ \(AD^2\) = DH . DB (câu b) => DH = \(\dfrac{AD^2}{DB}\)
=> DH = \(\dfrac{36}{10}\)= 3,6 cm
vì tam giác AHB \(\sim\) tam giác BCD (câu a)
=> \(\dfrac{AH}{BC}=\dfrac{AB}{BD}\) (các canh t/ứ tỉ lệ)
=> AH = \(\dfrac{BC.AB}{BD}\)= \(\dfrac{6.8}{10}\)= 4,8 cm
Vào câu hỏi tương tự nhé. Cứ kéo xuống sẽ thấy..