Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=AD=\sqrt{AC^2-AB^2}=2a\)
a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)
\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)
b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)
\(\Rightarrow T=2a\sqrt{10}\)
c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)
d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)
Câu 1:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)
Đáp án D sai
Câu 2:
\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)
Ta có:
\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)
\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)
Đáp án A đúng
Lời giải:
Trên tia đối tia $CB$ lấy $N$ sao cho $CB=CN$
\(|\overrightarrow{MC}+\overrightarrow{BC}|=|\overrightarrow{MC}+\overrightarrow{CN}|=|\overrightarrow{MN}|\)
Xét tam giác $BMC$ và $ADI$ có:
$\widehat{B}=\widehat{A}=90^0$
$\widehat{D}=\widehat{M}$ (cùng bù $\widehat{AMC})$
Do đó 2 tam giác này đồng dạng
$\Rightarrow \frac{BM}{BC}=\frac{AD}{AI}$
$\Rightarrow BM=BC.\frac{AD}{AI}=\frac{2BC^2}{AB}=\frac{3\sqrt{2}a}{4}$
$BN=2BC=a\sqrt{3}$
Do đó, áp dụng định lý Pitago:
$|\overrightarrow{MN}|=MN=\sqrt{BM^2+BN^2}=\frac{\sqrt{66}a}{4}$
Hình vẽ: