K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2020

A B C D H 8 16

a, xét \(\Delta AHB\)\(\Delta BCD\) ta có :

∠ABH = ∠BCD (=90o)

∠AHB = ∠BDC ( AB//CD , slt )

\(\Delta AHB\) ~ \(\Delta BCD\) ( g - g )

b, xét \(\Delta AHD\)\(\Delta BAD\) ta có :

∠D chung

∠BAD = ∠AHD ( =90 o)

\(\Delta AHD\) ~ \(\Delta BAD\) ( g - g )

\(\frac{AD}{BD}=\frac{HD}{AD}\) ⇒ AD . AD = HD . BD ⇒ AD2 = HD . BD ( đpcm )

c,\(\Delta ABD\) có BD2 = AB2 + AD2 = 64 + 256 = 320→ BC = \(\sqrt{320}\)

SABC = \(\frac{1}{2}\).AB .AD = \(\frac{1}{2}\).AH.BD

⇒ AH.BD=AB.AD ⇒ AH = \(\frac{AB.AD}{BD}\) = \(\frac{8.16}{\sqrt{320}}\) = 7 cm

a) Xét ΔAHB và ΔBCD có

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\)(AB//DC, hai góc so le trong)

Do đó: ΔAHB∼ΔBCD(g-g)

b) Xét ΔAHD và ΔBAD có

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

\(\widehat{ADB}\) chung

Do đó: ΔAHD∼ΔBAD(g-g)

\(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}=k\)(tỉ số đồng dạng)

hay \(AD^2=HB\cdot HD\)(đpcm)

c) Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

\(\frac{8}{BD}=\frac{AH}{4}\)(1)

Áp dụng định lí pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

\(BD^2=8^2+4^2=80\)

hay \(BD=4\sqrt{5}cm\)(2)

Từ (1) và (2) suy ra: \(\frac{8}{4\sqrt{5}}=\frac{AH}{4}\)

\(AH=\frac{8\cdot4}{4\sqrt{5}}=\frac{8\sqrt{5}}{5}cm\)

Vậy: \(AH=\frac{8\sqrt{5}}{5}cm\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ˆABH=ˆBDCABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ˆADHADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDAADBD=HDDA

hay AD2=HDBD

4 tháng 5 2017

Vào câu hỏi tương tự kiếm thử đii

4 tháng 5 2017

ko giống khác tý bạn ơi

16 tháng 2 2021

100 nha

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

19 tháng 8 2021

a) Xét hình chữ nhật ABCD có:

AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)

Xét tam giác AHB và tam giác BCD có:

\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{BCD}=90^0\)

=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)

b) Xét tam giác ADH và tam giác BDA có:

\(\widehat{ADB}\) chung

\(\widehat{AHD}=\widehat{BAD}=90^0\)

\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)

c) Xét tam giác BDC vuông tại C có: 

\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Xét tam giác ADH vuông tại H có:

\(AD^2=AH^2+DH^2\)( định lý Pytago)

\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

29 tháng 4 2016

Áp dụng công thức mà làm nhé!

16 tháng 5 2019

a) vì ABCD là hình chữ nhật 

nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )

Xét 2 tam giác AHB và BCD có 

 góc ABH = góc BDC 

góc AHB = góc BCD =900

=> 2 tam giác AHB và BCD đồng dạng (g.g)

b) Xét 2 tam giác ADH và BDA có 

góc ADH chung

góc AHD = góc BAD =900

nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g) 

=> \(\frac{AD}{BD}=\frac{DH}{AD}\)

=> AD2=BD.DH

tam giác ABD vuông tại A 

=> \(BD^2=AD^2+AB^2\)( Py-ta-go)

=>BD =10cm

mà AD2=DH.BD (cmt)

=> 62=DH.10

=> DH =3.6cm

tam giác ADH vuông tại H nên AD2=AH2+DH2  ( py-ta-go)

<=>    62-3.62=AH2

AH=\(\sqrt{6^2-3.6^2}\)=4.8cm

23 tháng 3 2018

a)  Xét   \(\Delta AHB\)  và     \(\Delta BCD\)  có:

     \(\widehat{AHB}=\widehat{BCD}=90^0\)

     \(\widehat{ABH}=\widehat{BDC}\)   (cùng phụ với góc  DBC  )

suy ra:    \(\Delta AHB~\Delta BCD\)

b)  Xét  \(\Delta ADB\) và     \(\Delta HDA\)  có:

\(\widehat{DAB}=\widehat{DHA}=90^0\)

\(\widehat{ADB}\)  CHUNG

suy ra:   \(\Delta ADB~\Delta HDA\)

\(\Rightarrow\)\(\frac{AD}{HD}=\frac{DB}{DA}\)

\(\Rightarrow\)\(AD^2=DH.DB\)  (ĐPCM)

c)   Áp dụng định lý Pytago ta có:

    \(BD^2=AD^2+AB^2\)

\(\Leftrightarrow\)\(BD^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BD=\sqrt{100}=10\) cm

\(\Delta ADB~\Delta HDA\)  \(\Rightarrow\)  \(\frac{AD}{HD}=\frac{AB}{HA}=\frac{DB}{DA}\)

hay    \(\frac{6}{HD}=\frac{8}{HA}=\frac{10}{6}=\frac{5}{3}\)

suy ra:   \(DH=3.6cm\)     \(AH=4,8cm\)