Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu chi tiết định dạng điểm S nên không giải được (ví dụ phải thêm SA vuông góc mặt đáy hoặc gì đó tương tự)
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)
b.
Gọi E là giao điểm AC và DI
I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)
\(\Rightarrow AICD\) là hình bình hành
Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật
\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông
\(\Rightarrow AC\perp DI\) tại E
Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)
Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)
\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)
Bạn kiểm tra lại đề,
1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)
2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)
Nguyễn Việt Lâm
e xin loi a
ABCD là hình thang vuông tại A và D
còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau
anh giup em vs ah
Lời giải:
a)
Có \(SA\perp (ABCD)\Rightarrow SA\perp AD\)
\(AB\perp AD\) do $ABCD$ là hình thang vuông tại $A$
\(\Rightarrow AD\perp (SAB)\)
b)
\(SA\perp (ABCD)\Rightarrow \angle (SC, (ABCD))=\angle (SC,AC)=\widehat{SCA}\)
Pitago: \(AC=\sqrt{AD^2+DC^2}=3a\)
\(\tan \widehat{SCA}=\frac{SA}{AC}=\frac{a\sqrt{3}}{3a}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow \angle (SC, (ABCD))=\widehat{SCA}=30^0\)
c)
\(SA\perp (ABCD)\Rightarrow \angle (SI, (ABCD))=\angle (SI,AI)=\widehat{SIA}\)
Pitago: \(AI^2=\sqrt{AD^2+DI^2}=\sqrt{5a^2+a^2}=\sqrt{6}a\)
\(\tan \widehat{SIA}=\frac{SA}{AI}=\frac{\sqrt{3}a}{\sqrt{6}a}=\frac{\sqrt{2}}{2}\)
\(\Rightarrow \angle (SI,(ABCD))=\widehat{SIA}=\arctan \frac{\sqrt{2}}{2}\)