K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Đáp án là A

22 tháng 1 2017

 

 

 

 

 

 

Ta có  S C D ∩ A B C D = C D

C D ⊥ S A C D ⊥ A C ⇒ C D ⊥ S A C ⇒ S C ⊥ C D

Vì  S C ⊥ C D , S C ⊂ S C D A C ⊥ C D , A C ⊂ A B C D

Nên  S C D , A B C D ^ = S C A ^ = 45 o

Dễ thấy ∆ S A C  vuông cân tại A

Suy ra SA = AC =  a 2

Lại có

  S M C D = 1 2 M C . M D = 1 2 a . a = a 2 2

Do đó

  V = V S . M C D = 1 3 S M C D S A = 1 3 . a 2 2 . a 2 = a 3 2 6

Ta có

  B D ∥ M N M N ⊂ S M N ⇒ B D ∥ S M N

Khi đó d( SM,BD ) = d( SM, (SMN) ) = d( D, (SMN) ) = d( A, ( SMN) )

Kẻ  A P ⊥ M N , P ∈ M N A H ⊥ S P , H ∈ S P

Suy ra  A H ⊥ S M N ⇒ d A S M N = A H

∆ S A P  vuông tại A

1 A H 2 = 1 S A 2 + 1 A P 2 = 1 S A 2 + 1 A N 2 + 1 A M 2 = 1 2 a 2 + 1 a 2 4 + 1 a 2 = 11 2 a 2

Do đó d = d( SM, BD ) = AH =  a 22 11

Đáp án A

20 tháng 4 2019

10 tháng 2 2019

Chọn đáp án D.

22 tháng 7 2018

Đáp án A

Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông  góc với giao tuyến.

Cách giải:

Kẻ IH ⊥ CD ta có: 

Ta có: 

Gọi E là trung điểm của AB => EC = AD = 2a

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

4 tháng 10 2019

 Đáp án D

21 tháng 10 2018

Đáp án B

Diện tích hình thang ABCD là:

S A B C D = A B . A D + B C 2 = 5

Vậy thể tích khối chóp S.ABCD là:

V = 1 3 . S A . S A B C D = 1 3 . S A . S A B C D = 1 3 .2.5 = 10 3 (đvtt)

29 tháng 5 2017