K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

Ta thấy hình chiếu vuông góc của  lên  là  nên  .

Mà  nên  .

Vậy góc giữa đường thẳng  và mặt phẳng  bằng  .

11 tháng 2 2022

BC bạn lấy đâu ra thế lấy trên trời xuống à

NV
21 tháng 4 2021

\(AB=BC=\dfrac{AC}{\sqrt{2}}=a\sqrt{2}\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà BC là giao tuyến giữa (SBC) và (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=1\Rightarrow\widehat{SBA}=45^0\)

21 tháng 4 2021

sao AB=BC=\(\dfrac{AB}{\sqrt{2}}\) vậy ạ?

12 tháng 8 2018

Đáp án là D

Gọi H là trung điểm của BC, ta có: AH ⊥ BC

Do SA ⊥ (ABC) 

Ta có: 

Xét tam giác vuông SAH:

24 tháng 9 2018

ĐÁP ÁN: B

NV
9 tháng 4 2021

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(\left\{{}\begin{matrix}BC=\left(SBC\right)\cap\left(ABC\right)\\SB=\left(SAB\right)\cap\left(SBC\right)\\AB=\left(SAB\right)\cap\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

\(SA\perp\left(ABC\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{SCA}\approx40^053'\)

Gọi M là trung điểm SB \(\Rightarrow GM=\dfrac{1}{3}AM\) (tính chất trọng tâm)

\(\Rightarrow d\left(G;\left(SBC\right)\right)=\dfrac{1}{3}d\left(A;\left(SBC\right)\right)\)

Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{1}{3a^2}+\dfrac{1}{a^2}=\dfrac{4}{3a^2}\Rightarrow AH=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(G;\left(SBC\right)\right)=\dfrac{1}{3}AH=\dfrac{a\sqrt{3}}{6}\)

12 tháng 2 2022

Bạn ơi, độ dài cạnh AC bằng a hay bằng 2a nhỉ? Với lại đề thiếu dữ kiện về độ dài SA. Mình cho là AC = a nghen, nếu khác thì bạn chỉ cần sửa số lại là được hen và điền lại độ dài cạnh SA nếu đề có nhé, mình sẽ làm một cách tổng quát nhất có thể.

Bạn vẽ hình giúp mình nha!

Kẻ \(AH\perp BC\left(H\in BC\right)\), xét \(\Delta ABC\) vuông tại A có AH là đường cao ứng với cạnh huyền: 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{a^2}+\dfrac{1}{a^2}\Rightarrow AH=\dfrac{a\sqrt{2}}{2}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp BC\left(SA\perp\left(ABC\right)\right)\\AH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAH\right)\) \(\Rightarrow BC\perp SH\)

\(\Rightarrow\left(\stackrel\frown{\left(SBC\right),\left(ABC\right)}\right)=\left(\stackrel\frown{AH,SH}\right)=arctan\left(\dfrac{SA}{AH}\right)\)

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

13 tháng 1 2018