K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

NV
8 tháng 1 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\Rightarrow\widehat{SAO}=60^0\)

\(AO=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(SA=\dfrac{AO}{cos60^0}=\dfrac{2a\sqrt{3}}{3}\)

\(S_{xq}=\pi.AO.SA=\dfrac{2\pi a^2}{3}\)

 

NV
12 tháng 1 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\)

\(\Rightarrow\widehat{SAO}=60^0\Rightarrow AO=SA.cos60^0=a\)

\(R=a;l=2a\Rightarrow h=SO=\sqrt{\left(2a\right)^2-a^2}=a\sqrt{3}\)

\(V=\dfrac{1}{3}\pi R^2h=\dfrac{\sqrt{3}}{3}\pi a^3\)

10 tháng 4 2017

11 tháng 5 2017

Đáp án đúng : B

24 tháng 8 2021

Tính V/πa³

NV
24 tháng 8 2021

Gọi O là tâm đáy \(\Rightarrow AO=\dfrac{a\sqrt{3}}{3}\)

\(SA=\dfrac{AO}{cos60^0}=\dfrac{2a\sqrt{3}}{3}\)

\(SO=\sqrt{SA^2-AO^2}=a\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{2a}{3}\)

\(V=\dfrac{4}{3}\pi R^3=\dfrac{32\pi a^3}{81}\)

\(\Rightarrow\dfrac{V}{\pi a^3}=\dfrac{32}{81}\)

24 tháng 10 2019

Đáp án B

Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được:

9 tháng 9 2017

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp đều nên SO ⊥(ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)