K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

a: Xét ΔMNQ có 

A là trung điểm của MN

B là trung điểm của MQ

Do đó: AB là đường trung bình của ΔMNQ

Suy ra: AB//NQ và AB=NQ/2(1)

Xét ΔNPQ có

C là trung điểm của QP

D là trung điểm của NP

Do đó: CD là đường trung bình của ΔNPQ

Suy ra: CD//NQ và CD=NQ/2(2)

Từ (1) và (2) suy ra ABCD là hình bình hành

13 tháng 11 2020

tự kẻ hình nha

a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ

=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi

b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)

ta có PQ vuông góc với AB

AC vuông góc với AB

=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)

từ (1);(2)=> ACEQ là hbh

c) 1) trong tam giác ABC có 

MN //AC( N thuộc MP)

AM=MB

=> MN là đtb của tam giác => MN=AC/2=> AC=2MN

2) Vì AC=2MN=> AC=6cm

MN là đtb=> CN=BN 

tam giác ABC vuông tại A

=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

=> BC=2AN=10cm 

vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2

=> AB^2=100-36

=> AB=8 (AB>0)

=> chu vi tam giác ABC là 6+8+10=24(cm)

28 tháng 7 2018

M E N Q F P

25 tháng 11 2018

a) Xét tam giác QMN có :

A là trung điểm của MN

B là trung điểm của MQ

=) AB là đường trung bình của tam giác QMN

=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)

Xét tam giác QPN có :

C là trung điểm của QP

D là trung điểm của NP

=) CD là đường trung bình của tam giác QPN

=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)

Từ (*) và (**) =) Tứ giác ABCD là hình bình hành  (1)

Xét tam giác MQP có :

B là trung điểm của MQ

C là trung điểm của QP

=) BC là đường trung bình của tam giác MQP

=) BC // MP

Do MNPQ là hình thoi =) MP\(\perp\)NQ

Mà BC // MP và AB // NQ

=) BC\(\perp\)AB   (2)

Từ (1) và (2) =) ABCD là hình chữ nhật

b) Ta có : MQ=QP

Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)

Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)

=) QB=QC

Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)

=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)

Xét tam giác QMN có:

MQ=MQ và \(\widehat{QMN}\)=600

=) QMN là tam giác đều

Xét tam giác MQN có :

NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)

=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300

Xét tam giác QBN và tam giác QCN có :

QB=QC ( chứng minh trên )

\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )

QN là cạch chung

=) tam giác QBN = tam giác QCN (c-g-c)

=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )

=) Tam giác BNC là tam giác cân tại N (3)

Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)

       =) 300 +300 =\(\widehat{BNC}\)

      =) \(\widehat{BNC}\)=600  (4)

Từ (3) và (4) =) Tam giác BNC là tam giác đều

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

a: Xet tứ giác MPNQ có

I là trung điểm chung của MN và PQ

nên MPNQ là hình bình hành

b:M đối xứng K qua PQ

nên MK vuông góc với PQ tại trung điểm của MK

=>H là trung điểm của MK

Xét ΔMKN có MH/MK=MI/MN

nên HI//KN

=>KN vuông góc với KM

c: M đối xứng K qua PQ

nên QM=QK

=>QK=PN

Xét tứ giác PQNK có

PQ//NK

PN=QK

Do đó: PQNK là hình thang cân

16 tháng 12 2021

a.Ta có MNPQMNPQ là hình bình hành

→MQ//NP,MQ=NP→MQ//NP,MQ=NP

Mà F,EF,E là trung điểm MQ,NPMQ,NP

→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP

→FQ=NE→FQ=NE

→NFQE→NFQE là hình bình hành 

→NF//QE→QE//NK→NF//QE→QE//NK

→NEQK→NEQK là hình thang

b.Ta có MF//NE,MF=NEMF//NE,MF=NE

→MNEF→MNEF là hình bình hành

Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE

→MNEF→MNEF là hình thoi

→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^

Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^

Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE

→GFHE→GFHE là hình chữ nhật

c.Để GFHEGFHE là hình vuông

→FE→FE là phân giác ˆGFHGFH^

→FE→FE là phân giác ˆNFPNFP^

→EF⊥NP→EF⊥NP

→MN⊥NP→MN⊥NP

→MNPQ→MNPQ là hình chữ nhật