K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)

a) Chứng minh ΔAED=ΔCFB

b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF

22 tháng 10 2014

a , ta có:AE//CF (vì cùng vuông góc vsBD)

=> góc FCO= góc EAO (vì so le trong )

      OA = OC (theo t/c hình bh )

xét 2 tam giác vuông OAE và OCF có:

           góc FOC = góc EAO ( cm trên )

            OA = OC (cmt)

   =>tg OAE = tg OCF (cạnh huyền - góc nhọn )

   =>OE = OF ( 2 cạnh tương ứng )

 b. ta có : AE// CF ( theo a ) (1)

               AE = CF ( vì tg OAE= tg OCF ( theo a )) (2)

 từ (1) và (2) => AECF là hbh

 ( hi vọng đúng !!)

               

 

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

12 tháng 8 2017

bạn đã tìm ra lời giải  chưa chỉ mình với nhanh nhanh nha mình sắp nộp bài rồi cảm ơn