K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

Vì hình bình hành ABCD có tâm I => I là trung điểm của AC và BC

Vì I là trung điểm AC

=> \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\)

=> xA = -2; yA = 5 => A(-2; 5)

Tương tự ta có D(7; 1)

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

NV
7 tháng 10 2019

Do O là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_O=\frac{x_A+x_C}{2}\\y_O=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=-x_A=-3\\y_C=-y_A=-1\end{matrix}\right.\)

Tương tự: \(\left\{{}\begin{matrix}x_D=-x_B=-1\\y_D=-y_B=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}C\left(-3;-1\right)\\D\left(-1;-2\right)\end{matrix}\right.\)

b/ Ta có \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;2\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-3\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-5=0\)

\(\overrightarrow{DA}=\left(4;3\right)\Rightarrow\) đường thẳng AD nhận \(\overrightarrow{n}=\left(3;-4\right)\) là 1 vtpt

Phương trình AD:

\(3\left(x-3\right)-4\left(y-1\right)=0\Rightarrow3x-4y-5=0\)

Hai cạnh còn lại bạn tự viết tương tự

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề. 

Câu 2: Gọi tọa độ điểm H(a,b)

Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)

Vì H là trực tâm tam giác ABC nên:

\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)

29 tháng 11 2019

Đáp án A

Giả sử A( x; y0) , Do A ; B đối xứng nhau qua Ox  nên B( x; -y0).

Ta có:

Vì A thuộc (E)  nên:

Vì AB = AC nên:

Thay (1) vào (2)  ta được:

Vì điểm A  khác C và Acó tung độ dương nên:

20 tháng 10 2018

Gọi D \(\left(x_D;y_D\right)\)

\(\overrightarrow{AB}\) = ( 2; 1)

\(\overrightarrow{DC}\) = (5 - \(x_D\); -4 - \(y_D\))

Vì ABCD là hình bình hành

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\left\{{}\begin{matrix}2=5-x_D\\1=-4-y_D\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=3\\y_D=-5\end{matrix}\right.\)

Vậy D ( 3;-5)

20 tháng 10 2018

D(3;-5)

NV
21 tháng 11 2021

\(AH=\dfrac{2S_{ABC}}{BC}=2\sqrt{5}\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{5}\)

\(\Rightarrow BH=\dfrac{1}{3}BC\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BH}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BH}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}H\left(1;1\right)\\H\left(3;-3\right)\end{matrix}\right.\) (sử dụng công thức điểm chia đoạn thẳng theo tỉ lệ)

21 tháng 11 2021

em cảm ơn ạ