K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2017

Lời giải:

Vì $ABCD$ là hình bình hành nên:

\(AB=DC,AD=BC\). Kết hợp với ĐKĐB suy ra:

\(\left\{\begin{matrix} DF=DC\\ BE=BC\end{matrix}\right.\). Do đó tam giác $DFC$ cân tại $D$ và tam giác $BCE$ cân tại $B$

Suy ra \(\left\{\begin{matrix} \widehat{DCF}=\frac{180^0-\widehat{FDC}}{2}=\frac{\widehat{ADC}}{2}\\ \widehat{BCE}=\frac{180^0-\widehat{CBE}}{2}=\frac{\widehat{ABC}}{2}\end{matrix}\right.\)

\(\Rightarrow \widehat{DCF}+\widehat{BCE}=\frac{\widehat{ADC}+\widehat{ABC}}{2}=\frac{180^0-\widehat{DCB}+180^0-\widehat{DCB}}{2}\)

\(\Leftrightarrow \widehat{DCF}+\widehat{BCE}=180^0-\widehat{DCB}\)

\(\Leftrightarrow \widehat{DCF}+\widehat{DCB}+\widehat{BCE}=\widehat{FCE}=180^0\)

Kéo theo \(E,C,F\) thẳng hàng (đpcm).

2 tháng 2 2016

sorry, mìh mới học lớp 7

Thế thì đừng trả lời 

20 tháng 10 2020

Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD

19 tháng 8 2017

A B C D E F

Vì ABCD là hình bình hành nên nên AB = DC cà AB // DC hay AB = BE và AB // BE

=> Tg AEBD là hình bình hành => AE // BD => \(\widehat{EAB}=\widehat{ABD}\)(SLT)

CM tương tự ta cũng có tg ABDE là hình bình hành => AF // BD => \(\widehat{FAD}=\widehat{ADB}\)(SLT)

Tam giác \(ADB\) có \(\widehat{ADB}+\widehat{ABD}+\widehat{BAD}=180^0\)(DL tổng 3 góc của 1 tam giác)

Mà  \(\widehat{EAB}=\widehat{ABD}\)\(\widehat{FAD}=\widehat{ADB}\) (cmt) nên \(\widehat{EAB}+\widehat{FAD}+\widehat{BAD}=180^0\)

Hay F;A;E thẳng hàng 

Vì tứ giác AEBD là hình BH nên AE = BD ; tứ giác FABD là hình BH nên AF = BH 

Từ 2 điều trên suy ra AE = AF hay A là trung điểm của FE => CA là đường trung tuyến của tam giác ECF

Xét tam giác ECF có ED ; FB ; CA là các đường trung tuyến nên theo TC thì ED ; FB ; CA đồng quy (đpcm)

13 tháng 10 2019

Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath

22 tháng 10 2020

Cho hỏi câu c làm sao vậy ạ 

30 tháng 10 2020

giúp em với


A


BCDFEOa, Vì tứ giác ABCD là hình hình hành

⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC{AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD{AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)

 học tốt ;-;

2 tháng 2 2016

Vẽ hình ra nhé

 

2 tháng 2 2016

vẽ hình ra mình giải cho

10 tháng 12 2023

1:

ta có:ABCD là hình thoi

=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)

Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)

\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)

mà \(\widehat{BAD}=\widehat{BCD}\)

nên \(\widehat{EAH}=\widehat{FCD}\)

Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)

\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ADC}\)

nên \(\widehat{EBC}=\widehat{ADG}\)

Ta có: \(DA+AH=DH\)

\(AB+BE=AE\)

\(BC+CF=BF\)

\(CD+DG=CG\)

mà DA=AB=BC=CD và AH=BE=CF=DG

nên DH=AE=BF=CG

Xét ΔHAE và ΔFCG  có

HA=FC

\(\widehat{HAE}=\widehat{FCG}\)

AE=CG

Do đó: ΔHAE=ΔFCG

=>HE=FG

Xét ΔHDG và ΔFBE  có

DH=BF

\(\widehat{HDG}=\widehat{BFE}\)

DG=BE

Do đó: ΔHDG=ΔFBE

=>HG=FE

Xét tứ giác GHEF có

GH=EF

GF=HE

Do đó: GHEF là hình bình hành

2: Gọi O là giao điểm của AC và BD

Ta có: ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AC cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểmcủa HF

Ta có: EHGF là hình bình hành

=>EG cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của HF

nên O là trung điểm của EG

=>Hình bình hành EHGF và hình thoi ABCD có chung tâm