K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Xét hbh ABCD có :

AB = CD; AB // CD

Mà e là trg điểm của AB, E là trg điểm của CD

=> AF//EC, AF=EC

=> Tứ giác AFEC là hbh

b/ Xét tam giác DHC có:

IE//HC( hbh AFEC)

E là trg điểm của DC

=> I là trg điểm của DH (1)

chứng minh tương tự tam giác AIB

=> H là trg điểm của IB (2)

Từ (1) và (2) => đpcm

c/Xét tam giác DHC có:

I là ttrg điểm của DH

E là trg điểm của DC

=> IE là đg trbình của tg DHC

=> IE= 1/2 HC (3)

Xeý tg IEB có:

H là trg điểm của IB

HJ // IE (AE// FC; J thuộc FC)

=> J là trung điểm của BE

=> HJ là đg trbình của tg BIE

=> HJ = 1/2 IE (4)

Từ (3) và (4) => HJ = 1/4 HC hay 4HJ = HC

9 tháng 10 2017

A B C D J H I E F

21 tháng 11 2017

A B C D H I K

25 tháng 8 2017

B1 : Lấy N trung điểm AD ( thuộc AD ) => NA = ND = AD/2 = 5cm (1)

Hình thang ABCD có :

NA = ND ( cmt )

MB = MC ( gt )

=> NM là đg trung bình hình thang ABCD

=> NM = (AB + CD ) / 2 = 10 /2 = 5cm (2)

Xét tam giác AMD có : MN = 5cm ( 2)

mà MN = AD/2 (1)

=> tam giác AMD vuông ( đg trung tuyến ứng vs cạnh huyền = nửa cạnh huyền )

25 tháng 8 2017

=> AM vg góc với DM ( ddpcm )

chúc bạn học tốt :D

13 tháng 11 2017

giúp mk câu c thôi nhé mk cho 3 tick

Xét tứ giác ANHM có \(\widehat{ANH}+\widehat{AMH}=180^0\)

nên AHNM là tứ giác nội tiếp

Gọi O là tâm đường tròn ngoại tiếp tứ giác AHNM 

Xét (O) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

Do đó: \(\widehat{ANM}=\widehat{AHM}\)

mà \(\widehat{AHM}=\widehat{B}\)

nên \(\widehat{ANM}=\widehat{B}\)

Gọi K là giao điểm của AD và NM

Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên DA=DC

=>ΔDAC cân tại D

=>\(\widehat{C}=\widehat{DAC}\)

\(\widehat{KAN}+\widehat{KNA}=\widehat{B}+\widehat{C}=90^0\)

nên \(\widehat{AKN}=90^0\)

=>AD\(\perp\)NM

AH
Akai Haruma
Giáo viên
28 tháng 7 2017

Lời giải:

a)

Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)

\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)

Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)

Ta có đpcm.

b)

Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)

\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)

\(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)

Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)

Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)

c) Gọi \(T\equiv HM\cap IK\)

Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)

Xét tứ giác \(HDKT\)\(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)

\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)

Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)

Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)

Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)

Vậy \(N\) là trung điểm của $IK$