Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy rằng \(\dfrac{DG}{DC}=\dfrac{1}{3}\) và \(\dfrac{BK}{BC}=\dfrac{3}{5}\)
Ta thấy \(\dfrac{DE}{EB}=\dfrac{DG}{AB}=\dfrac{DG}{CD}=\dfrac{1}{3}\) \(\Rightarrow\dfrac{DE}{BD}=\dfrac{1}{4}\) \(\Rightarrow DE=\dfrac{1}{4}BD=\dfrac{1}{4}.24=6\left(cm\right)\)
Mặt khác \(\dfrac{FB}{FD}=\dfrac{BK}{AD}=\dfrac{BK}{BC}=\dfrac{3}{5}\) \(\Rightarrow\dfrac{FB}{BD}=\dfrac{3}{8}\) \(\Rightarrow FB=\dfrac{3}{8}BD=\dfrac{3}{8}.24=9\left(cm\right)\)
\(\Rightarrow EF=BD-DE-FB=24-6-9=9\left(cm\right)\)
Vậy \(DE=6cm;EF=FB=9cm\)
Hình bạn tự vẽ nhé!
Ta có: DG = \(\frac{1}{4}\) DC
\(\Leftrightarrow\) \(\frac{DG}{DC}=\frac{1}{4}\)
\(\Leftrightarrow\) DG = 1 cm và DC = 4 cm
Lại có: DC = AB (t/c 2 cạnh đối, hình bình hành ABCD)
mà DC = 4 cm (c/m trên)
Suy ra AB = 4 cm.
Tam giác AEB có: AB // DG (AB//DC, G \(\in\) DC), theo hệ quả định lí Talet có:
\(\frac{DE}{EB}=\frac{DG}{AB}\)
\(\Leftrightarrow\frac{DE}{EB}=\frac{1}{4}\)
\(\Leftrightarrow\) DE = 1cm và EB = 4 cm
Ta có: DB = DE + EB (E \(\in\) DB)
\(\Leftrightarrow\) DB = 1 + 4
\(\Leftrightarrow\) DB = 5 (cm).
Tỉ số \(\frac{DE}{DB}\):
\(\text{}\text{}\frac{DE}{DB}=\frac{1}{5}\)
A N B F C M D E O
a) Ta có : tứ giác ABCD là hình bình hành (gt)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của AC (1)
và O là trung điểm của BD
\(\Rightarrow OB=OD\)
mà \(DE=BF\left(gt\right)\)
\(\Rightarrow OB-BF=OD-DE\)
\(\Rightarrow OF=OE\)
\(\Rightarrow\)O là trung điểm của EF (2)
Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành
b) Ta có : tứ giác AECF là hinh bình hành (cma)
\(\Rightarrow AE//CF\)
\(\Rightarrow AM//CN\left(3\right)\)
Ta có : tứ giác ABCD là hinh bình hành (gt)
\(\Rightarrow AB//CD\)
\(\Rightarrow AN//CM\left(4\right)\)
TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành
\(\Rightarrow AM=CN\)
c) Ta có : tứ giác ANMC là hinh bình hành (cmb)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của NM
và O là trung điểm của AC
mà O là trung điểm của BD
\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm