Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do ABCD là hình bình hành ( gt )
=> BAD + ADC = 180 độ ( t/c hbh )
Mà BAD = 120 độ ( gt ) => ADC = 60 độ
Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI
=> ADI = CDI = 30 độ
Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )
=> AID = ADI = 30 độ => Tam giác AID cân
=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )
b, CM ADF đều
Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )
=> 1/2 AB = 1/2 CD => AI = BI = DF = CF
mà AI = AD => AD = DF
=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )
=> ADF đều
CM AFC cân :
DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )
mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )
c, Ta có : AF = DF = CF ( cmt )
=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD
Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD
và AF = 1/2CD
=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )
=> AD vuông góc với AD ( Đpcm )
A) Ta có:
AB//CD
=> Góc AMD = MDC (so le trong)
=> Tam giác AMD cân tại A
=> AM = AD
Mà AM = 2AB
=> AB = 2AD
a)Ta có gAMD = gMDC (so le trong), mà gMDC = gADM (gt) => gADM = g AMD
=> tg ADM cân tai A => AD = AM = AB/2 hay AB = 2AD
b) Từ A hạ AI v^g góc với DM => I là trung điểm của DM và AI là phân giác của góc A (tc tg cân)
=> DM = 2 DI (1) và g DAI = 120/2 = 60 độ
Mặt khác gD + gA = 180 độ ( hai góc trong cùng phía, AB // DC) mà gA = 120 độ => gD = 60 độ
tg v^g DAI và tg v^g ADH có gDAI = gADH = 60 độ, AD là cạnh huyền chung
=> tg DAI = tg ADH ( cạnh huyền, góc nhọn)
=> AH = DI (2)
Từ (1) và (2) => DI = 2 AH
c) Gọi N là trung điểm của DC do Dc= AB nên AD = DC/ 2= DN => tg ADN cân tại D mà gD = 60 độ => tg ADN đều => AN = AD = DC/ 2
tg ADC có đường trung tuyến AN = DC/2 => tg ADC v^g tại A hay DA _|_ AC
có tìm thấy câu hỏi này tương tự nhưng nhìn ngay dòng đầu là bn đã sai r :v
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)